
Cohesive Group Nearest Neighbor Queries over
Road-Social Networks

Fangda Guo1, Ye Yuan1*, Guoren Wang2, Lei Chen3, Xiang Lian4, Zimeng Wang1

1School of Computer Science and Engineering, Northeastern University, Shenyang, China
2School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China

3Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China
4Department of Computer Science, Kent State University, Ohio, USA

1{fangda@stumail, yuanye@mail, zimeng@stumail}.neu.edu.cn, 2wanggr@bit.edu.cn, 3leichen@cse.ust.hk, 4xlian@kent.edu

Abstract—The group nearest neighbor (GNN) search on a road
network Gr , i.e., finding the spatial objects as activity assembly
points with the smallest sum of distances to query users on
Gr , has been extensively studied; however, previous works have
neglected the fact that social relationships among query users,
which ensure the maximally favorable atmosphere in the activity,
can play an important role in GNN queries. Many real-world
applications, such as location-based social networking services,
require such queries. In this paper, we study a new problem: a
GNN search on a road network that incorporates cohesive social
relationships (CGNN). Specifically, both the query users of high-
est closeness and the corresponding top-j objects are retrieved.
One critical challenge is to speed up the computation of CGNN
queries over large social and road networks. To address this
challenge, we propose a filtering-and-verification framework for
efficient query processing. During filtering, we prune substantial
unpromising users and objects using social and geographically
spatial constraints. During verification, we obtain the object
candidates, among which the top j are selected, with respect
to the qualified users. Moreover, we further optimize search
strategies to improve query performance. Finally, experimental
results on real social and road networks significantly demonstrate
the efficiency and efficacy of our solutions.

I. INTRODUCTION

With the ever-growing popularity of GPS-enabled mobile
devices, many location-based service (LBS) systems (e.g.,
Google Maps) have been deployed and widely accepted by
mobile users, who use them to easily capture and upload
their own locations during daily activities. Along with the
widespread prevalence of LBSs, recent years have witnessed a
massive explosion in location-based social networking (LBSN)
applications, such as Yelp, Foursquare and Facebook Places. In
all these applications, social network users are always associ-
ated with location information (e.g., public places, home/office
addresses), which can be shared with their “friends”.

It is envisaged that such location information can bridge
the gap between the physical world and the virtual world of
social networks. The nearest neighbor (NN) search and its
variants on road networks are fundamental issues in LBSs due
to their importance in a wide spectrum of applications [1]–
[3]. Such search capabilities provide social network users with
new opportunities for rapidly organizing impromptu offline
activities. Below are three typical example query scenarios
that arise in the new context of road-social networks.
Q1 To arrange a gathering, Steve wishes to find two highly

ranked cafes nearby (e.g., within 6.5 km) at which he and
his 3 friends, who preferably know each other well, can
meet while minimizing the total distance traveled.

Road Network (Gr)

Social Network (Gs)

s2

s1

s3

s4

s5

s6

s7

s9 s10

s8 s11

s12

s13
s14 s15

s16

s17

s18

s19

s20

s21

s22

s23

s24
s25

s26

s27

r2

r7

r3

r4

r5

r6

o6

o5

o4

o8

o1

r1

r8

r9
r10

r11

r12
r13

r14

r15

r16

o2

o3

o7

Keyword information

o2 grand hotel

o3 Chinese restaurant

o4 cafe de flore

o5 BBQ, bistro, cafe

o6 cafe pub

o7 national park

o8 central cafe

o1 bar & cafe

User locations

s12 r15

s13 r7

s14 r13

s15 r11

s7 o7

s16 r4

s21 r3

s26 r9

Fig. 1. Example of road-social network.

Q2 A tour company wishes to divide its tourist customers
into several groups according to their mutual familiarity.
For each group, a mini-coach will be arranged to wait at
and depart from a parking location sufficiently close to
everyone (e.g., where they can arrive within 30 minutes).

Q3 A company headquarters plans to invite a number (e.g.,
30) of its branch management staff, who often have busi-
ness contacts or have participated in the same projects,
and book a hotel ballroom no more than 10 km from
the farthest branch at a location that minimizes the total
travel cost, to hold a banquet.

As significant and substantial manual coordination is still
required, none of the existing methods can solve the above
problems. Specifically, the challenges faced in organizing such
activities lie in issuing timely invitations that specify both
optimal invitees and suitable assembly points in accordance
with the closeness of a limited number of candidate atten-
dees and their proximity to corresponding locations in the
physical world. Intuitively, when attendee size increases, the
organization process becomes more complicated and thereby
too tedious to coordinate manually. Thus, it is imperative
to develop efficient new techniques to alleviate the effort
and support impromptu offline activity planning services. A
specific motivating example follows.

Example 1: Fig. 1 illustrates Q1 over a road-social network,
which is split into a social layer (Gs) and a road layer (Gr)
for clarity. The circles in Gs and Gr represent users and road
intersections/end-points, respectively. In Gr, the rectangles de-
note spatial-textual objects lying on edges, for which keyword

information is listed; the number on each edge represents the
travel distance on the corresponding road segment. In Gs,
the published user location information provides a mapping
specifying the location r ∈Gr of each user s∈Gs. Suppose
that s13 in Gs is Steve, whose current location is r7 in Gr.
From Steve’s perspective, he may be advised that s12, s15, and
s16 (at r15, r11, and r4, respectively) could be invited to o5 or
o8, both of which meet his requirements of proximity 6.5 km
and keyword “cafe”, with a minimum total travel distance of
13.8 or 15.8 km, respectively. However, as observed in Gs, s12
and s15 are both unacquainted with s16; in contrast, s12, s14,
and s15 (at r15, r13, and r11, respectively) know each other
best and thus are the optimal invitees. Accordingly, o5 and
o6, with minimum total travel distances of 12 and 15.5 km,
respectively, are the best selections that should be ultimately
recommended to Steve. �

This example motivates us to consider a novel type of
query on road-social networks, namely, cohesive group nearest
neighbor (CGNN), and to propose efficient processing algo-
rithms. Specifically, given Gs, Gr, the number c of activity
attendees (including a query user uq), and an upper limit ε on
distance/time , an activity initiator1 issues a CGNN query that
should return c attendees and the top-j objects (i.e., assembly
points) from Gr containing keywords w such that the travel
cost of each attendee is within ε and the total travel cost of all
attendees is minimized. The query also incorporates a social
constraint on the closeness of the c attendees: each invitee of
uq in Gs should know the others as well as possible.

Challenges. In this paper, we address the following challenges
in efficient CGNN query processing. (1) Since the number of
attendees is limited to c and their closeness is to be maximized,
the social constraint among the attendees is different from the
traditional k-core [4], a well-known concept in graph theory,
which is the maximal induced subgraph in which every vertex
has at least k neighbors. Thus, selecting of the most cohesive
set of attendees is nontrivial because of the massive number
of possible combinations to be evaluated. (2) Retrieving the
total travel cost to a target object in road networks, as opposed
to geometric distances in Euclidean space, is more complex
since location and accessibility of objects are restricted by the
computation of network distance, particularly with increasing
c. (3) Both the social and road networks are typically massive.
For example, Facebook has 1 billion users, and the USA road
network alone has more than 20 million vertices. Thus, it is
challenging to efficiently process CGNN queries over typically
large road-social networks.

Our Solution and Contributions. A simple strategy for
solving a CGNN query is to enumerate all combinations of c−1
invitees of uq , select the most cohesive one(s), compute the
total cost for each object by traversing Gr, and return the top-j
objects within ε. However, this strategy is obviously infeasible
due to the massive costs of enumeration and traversal.

To address the above challenges, we propose a filtering-
and-verification framework: (1) to avoid enumeration while
rapidly locating comprehensive solutions that consider both the
social network topology and the scale of the activity, the most
cohesive k-core model is developed to quantify closeness and

1To support general offline activity planning, the attendees include the query
user and other invitees but not necessarily the activity initiator.

ensure the maximally favorable atmosphere; (2) an incremental
and accumulative strategy is adopted to gradually expand the
search space in road networks while significantly pruning
unpromising objects; and (3) an effective verification strategy
is designed to expedite the extraction of the top-j objects
among the candidates. Moreover, a state-of-the-art hierarchical
tree structure [5] is adopted to index road networks, allowing
candidates to be obtained more quickly. Finally, we optimize
the overall query performance in a round-robin fashion. The
principal contributions are summarized as follows.
• We formulate a pragmatic query type for road-social

networks, i.e., CGNN queries, to identify suitable spatial-
textual objects as assembly points for optimal sets of
attendees. Such queries can accommodate various types
of offline activities of specified scales.

• We develop the first efficient algorithm for finding the
most cohesive k-core model to ensure the social closeness
of a limited number of attendees.

• Effective pruning and verification strategies for finding
the top-j objects are proposed, and optimization tech-
niques are designed to further improve query processing.

• We conduct extensive experiments on real datasets to
demonstrate the effectiveness and efficiency of our pro-
posed strategies and algorithms.

The rest of the paper is organized as follows. Section II for-
mulates the CGNN problem. Section III presents our baseline
solution. Section IV discusses solution optimization. Section V
reports the experimental results. Section VI reviews related
work, and Section VII concludes the paper.

II. PROBLEM DEFINITION

In this section, we formally define our CGNN queries over
road-social networks. Table I summarizes the mathematical
notations used throughout this paper.

A. Preliminaries
Road network. In this paper, a road network is modeled as an
undirected weighted graph Gr=(Vr, Er), where Vr is a set of
vertices and Er={(u, v)|u, v ∈ Vr ∧u 6= v} is a set of edges.
A vertex vr∈Vr represents a road intersection or an end of a
road, and an edge er=(u, v)∈Er represents a road segment
that enables travel between vertices u and v. Each edge (u, v)
is associated with a nonnegative weight w(u, v) that represents
the cost (e.g., distance or travel time) of a corresponding road
segment.

Let p be a spatial point lying on the edge (u, v). The travel
cost from vertex u to p, denoted by w(u, p), is assumed to be
proportional to the distance (length) between them. For two
given points u and v in Gr, we use dist(u, v) to represent the
network distance (cost) between u and v, which is the sum of
the edge weights along the least costly path from u to v. Note
that the least costly path corresponds to the shortest path if
the edge weight represents the distance.

A spatial-textual object2 o ∈ O is described by a spatial
point and a set of keywords from a vocabulary, denoted by
o.loc and o.T , respectively. For simplicity, we assume that
objects always lie along the edges (i.e., road segments) of Gr.

2Hereafter, when there is no ambiguity, “spatial-textual object” is abbrevi-
ated to “object”.

TABLE I
SUMMARY OF NOTATIONS

Notation Description
c, uq number of attendees and query user for an activity
w, ε set of query keywords and a distance/time threshold
j number of assembly points to select among
Gs(J), Gs(Vs∗) subgraphs of Gs induced by J and Vs∗
Gk

s , G
k
s (uq , c) k-core of Gs and cohesive k-core(s) of uq in Gs

Gkmax
s (uq , c) Gk

s (uq , c) with maximum coreness
O set of spatial-textual objects
Ls(uq) published location of uq in the road network
Q query points, i.e., Ls(G

kmax
s (uq , c))

NGs (v), NGk
s
(v) sets of neighbors of v in Gs and Gk

s

dgGs (v) degree of vertex v in Gs

w(u, v) cost of the road segment between u and v
dist(u, v) network distance between u and v
distsum(o,Q) total cost from object o to Q
distmax(o,Q) maximum cost from o to any qi ∈ Q

Suppose that an object o lies on an edge (u, v) with a given
cost to each end vertex u and v. A new vertex can be created
for o, and (u, v) is then replaced with edges (u, o) and (o, v).

Thus, we can define the aggregate network distance between
an object o and a set of locations Q as follows:

distf (o,Q) = f∀qi∈Qdist(o, qi), (1)

where f is an aggregate function that applies to sets of
numbers. In this paper, we simultaneously consider two types
of aggregate functions: distsum(o,Q) =

∑
∀qi∈Q dist(o, qi)

and distmax(o,Q)=max∀qi∈Q dist(o, qi).
For example, Fig. 1 displays a road network Gr and a

textual description of each object. Edge (r7, r15) has a distance
weight of w(r7, r15)=4. An object o5 lies on this edge, with
w(r7, o5)=1.5 and w(r15, o5)=2.5. The path r11r7r15 is the
shortest path from r11 to r15, with dist(r11, r15)=6.

Social network. We model a social network as an unweighted
and undirected graph Gs=(Vs, Es, Ls), where Vs is the set of
vertices (representing users), Es⊆Vs×Vs is the set of edges
(i.e., social relations), and Ls is the set of mappings defined
on Vs such that for each vertex vs in Vs, Ls(vs) specifies
the attributes of vs (e.g., name, gender, and location). In our
case, Ls(vs) provides a mapping of each user’s location in
the road network. Given a vertex vs, we denote the set of
its neighbors, {us|(us, vs)∈Es}, by NGs

(vs). The degree of
vs, |NGs

(vs)|, is denoted by dgGs(vs). Then, we can formally
define the induced subgraph as follows.

Definition 1: (Induced Subgraph). A graph Gs(Vs∗) =
(Vs∗ , Es∗ , Ls∗) is called the subgraph of Gs induced by Vs∗ ,
where (1) Vs∗ ⊆ Vs and (2) edge (u, v) ∈ Es∗ , iff u, v ∈
Vs∗ , (u, v)∈Es and (3) for each v∈Vs∗ , Ls∗(v)=Ls(v).

The k-core concept [4], which has been widely used to
describe cohesive subgraphs, is formally defined as follows.

Definition 2: (k-Core). Given a graph Gs, an induced
subgraph Gs(J) is the k-core of Gs, denoted by Gk

s , iff the
following two conditions are true. (1) k-degree: dgGs(J)(v)≥k
for every v ∈ J . (2) maximality: For any J ′ such that
J⊂J ′⊆Vs, there exists a u∈J ′\J such that dgGs(J′)(u)<k.

Note that we have Gk+1
s ⊆ Gk

s [6]. A vertex v ∈ Gs has
coreness k if it belongs to Gk

s but not to Gk+1
s . For any V ⊆

Vs, the largest coreness in a graph Gs(V) is called the coreness
of Gs(V), which is denoted by cn(Gs(V)).

s2

s1

s3

s4

s5

s6
s7

s9 s10

s8

s11

s12

s13
s14 s15

s16

s17

s18

s19

s20

s21

s22

s23

s24

s25

s26

s27

Gs
2

Gs
3

Gs
4

Fig. 2. k-cores of Gs in Fig. 1.

B. Definition of the CGNN Problem

Definition 3: (Cohesive k-Core). Given a constant c and a
vertex uq ∈J ⊆Vs in the social network Gs, the cohesive k-
core, denoted by Gk

s(uq, c), is a connected induced subgraph
Gs(J) such that Gs(J) is a k-core and |J | = c.

We may conclude that the user group J of Gk
s(uq, c) con-

sists of {uq, u1, . . . , uc−1}, whose coreness can be expressed
as cn(Gs(J)). Among all k-cores Gk

s(uq, c), any k-core with
the maximum coreness is referred to as the most cohesive k-
core, denoted by Gkmax

s (uq, c); i.e., ∀k′ >kmax, there exists
no Gk′

s (uq, c). Note that kmax can be up to c−1.

Example 2: In Fig. 2, G2
s, G

3
s and G4

s are annotated in
different colors. Suppose that uq = s8 and c = 5; then, the
subgraph induced by {s7, s8, s9, s10, s11} is a cohesive 2-
core. Similarly, another six subgraphs can also be identified
as G2

s(s8, 5). However, there exists one additional subgraph
induced by {s2, s3, s4, s6, s8} with a coreness of 4 that is the
most cohesive k-core, i.e., G4

s(s8, 5). �

Definition 4: (Maximum Connected Component). The maxi-
mum connected component of graph Gs with regard to a vertex
uq and a constant c, denoted by Cmax(uq, c), is the component
that contains uq in the k-core with maximum coreness among
all k-cores of Gs such that |Cmax(uq, c)|≥c.
Road-social network. A road-social network is a pair of
graphs (Gr, Gs), where Gr is a road network and Gs is a
social network. Each vertex us∈Gs is associated with a vertex
vr or a spatial point p of Gr, indicating that user us is currently
in location vr or p, i.e., Ls(us)=vr or p in our case.

For example, Fig. 1 shows a road-social network. The
mapping between s26 and r9 in the published user location
information indicates that s26 is currently at r9.

Problem statement (CGNN). Given graphs Gs and Gr, an
activity initiator issues a query q=〈uq, c, w, ε, j〉, where uq is
the query user in Gs, c is the number of attendees, w is a set
of keywords, ε is the network distance threshold and j is an
integer. A CGNN query retrieves c users and a corresponding
set Aq of j objects from set O with the smallest total cost
to all locations in set Q over the road-social network such
that (1) Q consists of locations in Gr associated with the c
users from Gkmax

s (uq, c), denoted by Ls(G
kmax
s (uq, c)), i.e.,

{Ls(uq), Ls(u1), . . . , Ls(uc−1)}; (2) Aq ⊆ O∗ ⊆ O in Gr,
∀o∈O∗, w⊆o.T , and |Aq|=j; and (3) ∀o∈Aq,∀o′∈O∗\Aq ,
both distsum(o,Q)≤distsum(o′, Q) and distmax(o,Q)≤ε.

We regard the locations that comprise the most cohesive k-
core for a group of users as the query points Q; e.g., the CGNN
query q = 〈Steve, 4, “cafe”, 6.5, 2〉 maps to Q1. Note that
there may be more than one group of c users in Gkmax

s (uq, c).
As illustrated in Section III-B, the local-search-based solution

Procedure CGNN_Framework{

 Input: (Gr, Gs), q = uq, c, w, ε, j

 Output: Gs (uq, c) and Aq

 (1) find the most cohesive k-core of uq with size c

 (2) prune objects with keywords w and network distance ε

 (3) verify top-j qualified objects from candidate set S

kmax

Fig. 3. Framework for a CGNN query.

returns each group in Gkmax
s (uq, c) but the heuristics only

select the most promising one that rapidly leads to a solution.

III. BASELINE SOLUTION

This section presents our efficient approach for CGNN
query answering. In Section III-A, we briefly introduce the
framework of our solution. Section III-B shows how to find
the most cohesive k-core, and Section III-C presents effi-
cient algorithms for filtering out objects based on network
distance restrictions. Section III-D describes new verification
techniques for reducing the cardinality of the candidate objects
and presents our final CGNN algorithm that integrates these
techniques.

A. Framework of Our Approach
For processing CGNN queries, we propose the filtering-

and-verification framework shown in Fig. 3. First, we locate
and select the most cohesive k-core Gkmax

s (uq, c) for uq .
Second, we filter out objects beyond a given network distance
threshold ε from the locations in Gr (i.e., query points) linked
to each user in Gkmax

s (uq, c) and keep the remaining objects.
Then, we compute the next nearest neighbor (NN) of each
query point to obtain the candidate set S of objects until j
common objects are found for all query points. Finally, we
identify unpromising objects through inference and return the
top-j qualified objects. The framework consists of a filtering
(i.e., finding the most cohesive k-core in the social network),
pruning objects based on keywords and a network distance ε
on the road network, and verification (i.e., verifying qualified
objects in candidate set S).

Note that we initially employ the popular inverted indexing
technique to organize the objects. Thus, only objects O∗⊆O
whose textual descriptions correspond to all user-specified
keywords w are retained in the search, and all others are
pruned. Loading objects that do not match all query keywords
could result in performance degradation, especially when w is
not small. In the rest of this paper, we use O∗ to denote the
objects meeting keywords w.

B. Finding the Most Cohesive k-Core
To determine the most cohesive group relationships between

uq and its correlative neighbors, which may also be intercon-
nected, we propose a local-search-based solution called center
expansion (CE). The intuition is that the most cohesive group
for a given vertex should be in the vicinity of the vertex.
Thus, the entire Gs is not necessarily involved in the search.
The local-search-based solution works as follows.

CE leverages the social-distance-based pruning (SD) as
described in Section IV-A and the k-core decomposition [7],
and treats uq as a center in Cmax(uq, c) for outward diffusion,
i.e., a breadth search. In each round of CE, multiple vertices
are selected without duplication from among the neighbors
of the center, and an unmarked vertex is taken as the new

Algorithm 1: HeuristicsFramework(uq, c)

Input: uq : query user; c : size constraint

Output: Gkmax
s (uq , c)

1 G′
s ← Social Distance based Pruning(uq , c);

2 Cmax(uq , c)← k-core of G′
s;

3 queue.enqueue(uq); subset H ← ∅;
4 while queue 6= ∅ do
5 v ← queue.dequeue(); H ← H ∪ {v};
6 if |H| = c then

7 return H as Gkmax
s (uq , c);

8 foreach (v, w) ∈ edges in Cmax(uq , c) do
9 if w is not visited then

10 queue.enqueue(w);

center. When the size of an expansion reaches c, the subgraph
and its coreness are recorded. Once all possible expansions in
the current connected component of Gk

s have been completed,
CE returns the induced subgraph(s) with coreness k, if any,
as Gkmax

s (uq, c); otherwise, it expands uq in the connected
component of Gk−1

s . CE exploits the graph topology to scale
out from the center such that the induced subgraph of each
completed expansion is connected and includes uq .

Although SD may reduce the search space and the time to
compute the k-core is linear in the number of edges [6], i.e.,
O(|Es|), the cost is high due to the numerous combinations.
The most cohesive k-core must exist in a subgraph of size s
containing c users, and we must verify at least Cs

c−1 permuta-
tions; thus, the time complexity is O(sc). Since the subgraph’s
coreness cannot be greater than that of Cmax(uq, c), which is
typically taken to be constant, we can think of s as being
closely related to the scale of |Vs|, especially when Gs has
a high density (e.g., a high average degree). Thus, the lower
bound on the complexity of any exact algorithm is O(|Vs|c).
As shown in Section V, our exact algorithm takes a relatively
long time even on a graph with only thousands of vertices.
Thus, a time complexity of O(|Vs|c) is already beyond reach,
and the solution is intractable on big data.

Next, we propose two intelligent lightweight heuristics of
constant cost. The basic idea for refining candidate generation
is to use a priority queue to select the most promising vertex
that will rapidly lead to a solution. Theoretically, Theorem 1
can be used as a prerequisite to support our heuristics.

Theorem 1: For graph Gs and query vertex uq , given an
attendee size c, there must exist Gkmax

s (uq, c)⊆Cmax(uq, c).

Proof: If @Gkmax
s (uq, c) ⊆ Cmax(uq, c), we can obtain

kmax>cn(Cmax(uq, c)), which contradicts Definition 4. �

Intuitively, Gkmax
s (uq, c) is a subgraph of the connected

component of Gs containing uq , whose size is no less than c
and coreness is the greatest.

Largest increment in coreness (Lc). Selecting the vertex that
leads to the largest increment in the coreness measure is a
straightforward heuristic since the final goal for Gkmax

s (uq, c)
is to find a subset H satisfying that |H|=c and cn(Gs(H)) is
as close as possible to or even equal to c−1. In this strategy,
the priority f(v) of a vertex v is defined as

f(v) = cn(Gs(H ∪ {v}))− cn(Gs(H)). (2)

This approach is a greedy one since only the improvement
in cn(H) in the next step is considered. Note that whenever

a vertex is added to H , the coreness of the current H is
incremented by at most 1. Hence, this strategy is equivalent
to random selection from the vertices adjacent to one of the
vertices with the minimal degree in H .

Largest incidence (Li). This selection approach is more intel-
ligent. The priority of a vertex v is defined as

f(v) = dgGs(H∪{v})(v). (3)

In this strategy, we select the vertex with the largest number of
connections to the current H . This technique yields the fastest
increase in the mean degree of Gs(H). In general, the lowest
degree of a graph increases as its density grows; consequently,
a valid solution H with cn(Gs(H)) is expected to be found
within finite steps if such a solution exists.

s20

s21

s22
s17

(H3)

s20

s21

s22

s18

(H4)(H2)

s21 s27

s26s22

s21

s22

s27

s20

(H1)

Fig. 4. Local search from s21 with c = 4.

Example 3: Suppose that s21 wishes to find the most
cohesive group of 3 invitees in Fig. 2 (uq = s21, c = 4). CE
returns G2

s(s21, 4), consisting of 4 different user groups, as
shown in Fig. 4. On the other hand, if we always choose the
vertex with the largest number of connections to H , i.e., use
the Lc or Li selection strategy, only Gs(H1) or Gs(H2) is
found. Because uq has 4 neighbors, one of which is selected
after uq , e.g., s20, only s27 and s22 can be successively
selected, yielding Gs(H1), due to the vertex priorities defined
in Equations 2 and 3. �

Complexity analysis. Let n′ and m′ denote the numbers of
vertices and edges, respectively, in Gs(H). Generally, Lc and
Li can be implemented in O(n′ +m′logn′) time. When a
new vertex v is added to the queue, at most dgCmax(uq,c)(v)
queue update operations must be executed, that is, at most
m′ update operations in total. Each queue operation (insert,
delete, priority update) generally has a time complexity of
O(logn′). Through careful design, Li can be implemented in
O(n′+m′) time with an expansion cost of O(1). We maintain
a set of lists, each containing vertices with the same f(v).
Each time v is added to H , the f(·) value of v’s neighbors
(except those already in H) increases by 1. We move each
influenced neighbor from its original f(·) list to the list for
f(·)+1. In this way, we can always find one vertex with the
maximal f(·) in O(1) time.

If there is a tie in the maximal f(·) values for both strategies,
we select the vertex with the minimal social distance to uq
based on the SD process described in Section IV-A; if there
is still a tie, a vertex is selected arbitrarily.

C. Range Filter
To support general road networks with various cost mod-

els (e.g., distance or travel time), we adapt the incremental
network expansion (INE) algorithm of [3] to incrementally
access objects since INE does not rely on specific restrictions
(e.g., Euclidean distances [3]) or precomputed road networks
(e.g., shortcuts [8] or Voronoi diagrams [9]). In [3], the
network distance is calculated from scratch for each object;
to alleviate the computational cost, we integrate Dijkstra’s

Algorithm 2: RangeFilter(Q, ǫ)

Input: Q : query points; ǫ : network distance threshold
Output: R : objects with network distance restriction

1 R :=∅; M :=∅; distT :=0;
2 foreach query point qi ∈ Q do
3 u← the vertex where qi is; Mi.enqueue(〈u, 0〉);
4 while Mi 6= ∅ do
5 〈n, dist〉 ←Mi.dequeue();
6 distT := dist; terminate while if distT > ǫ;
7 Mark the vertex n;
8 foreach unmarked vertex ni ∈ Adj[n] do
9 Update dist(ni) if dist(ni) > dist+ w(n, ni);

10 foreach object o ∈ O∗ on (n, ni) do
11 dist(o) :=dist+w(n, o); 〈o, dist(o)〉 → Ri;

12 Mi.enqueue(〈ni, dist(ni)〉);
13 foreach marked ni ∈ Adj[n] do
14 foreach t ∈ Ri and t.o on (ni, n) do
15 t.dist := min{t.dist, dist+ w(n, o)};

16 Ri :=Ri\t if ∃t ∈ Ri with t.dist>ǫ; ∪|Q|
i=1Ri → R;

algorithm [10] into INE such that the network distances to
objects are calculated cumulatively from each query point
qi∈Q, i.e., Ls(G

kmax
s (uq, c)), during network expansion.

For simplicity of presentation, in Algorithm 2, we assume
that each query point qi starts from a vertex3 u in Line 3.
For qi ∈ Q, a min-priority queue Mi ∈ M is used to store
the vertices accessed during expansion, where dist(n)=∞ if
vertex n has not been visited. Here, dist(n) = dist(qi, n) if
a vertex n is marked (Line 7). Similarly, we use dist(o) to
compute dist(qi, o), and dist(o) = dist(qi, o) if an object o
can be visited from both end vertices of its edge (Line 15).
In Algorithm 2, vertices are accessed in nondecreasing order
of their network distances from qi. Line 6 updates distT ,
which is the lower bound on the network distance for any
unmarked vertex. The expansion terminates when distT > ε,
which implies that dist(q, nx) > ε for any unmarked vertex
nx. For each vertex ni in the list of vertices adjacent to n,
Line 9 updates dist(ni) if ni is not marked, and the objects
on edge (n, ni), that satisfy the keyword constraint are loaded
if ni is visited for the first time (Line 10), followed by a
network distance computation based on dist(n) (Line 11).
If vertex ni is already marked, Lines 13-15 may update the
network distances of the objects since both end vertices (n
and ni) of the edge are marked. Finally, objects with network
distances longer than ε are pruned from Ri ∈ R. Note that
Algorithm 2 can be adapted for directed road networks due to
our integration of the INE and Dijkstra algorithm.

Example 4: In Fig. 1, suppose that q1 is at r6, with
ε = 4.5 and w = {“cafe”}. After r6 is marked, its
neighbors r15 and r4 with updated network distances are
placed in M1 = {〈r15, 1〉, 〈r4, 2.8〉} since no object is
found on either edge (r6, r15) or (r6, r4). Next, 〈o5, 3.5〉
and 〈o4, 5.2〉 on (r15, r7) and (r15, r13), derived from the
first element in M1, are discovered and placed in R1. Then,
M1 = {〈r4, 2.8〉, 〈r16, 4〉, 〈r7, 5〉, 〈r13, 6.7〉} is updated. Now,
r4 reaches r3 and r5 with 〈o8, 3.8〉, and r16 reaches r14 with
〈o1, 7.5〉. Since the distance to the next entry 〈r3, 4.8〉 in M1 is
larger than ε, finally, R1={〈o5, 3.5〉, 〈o8, 3.8〉} with 〈o4, 5.2〉
and 〈o1, 7.5〉 discarded. �

3If qi is on an edge, we can use the two end vertices of the edge to find
nearby objects and merge the answer sets.

Complexity analysis. Let v′ and e′ denote the numbers of
vertices and edges, respectively, accessed during road network
expansion; then, Algorithm 2 can be implemented with a time
complexity of O(c(v′log(v′)+e′)).

D. Verification

This section presents our verification techniques for CGNN
queries on road-social networks. Henceforth, the next NN of
a query point qi refers to the object last obtained from Ri

as described in Section III-C. The process of continuously
obtaining the next NN for a query point is regarded as
the expansion of that query point, and the expansion order
determines the next query point to be expanded.

1) Obtaining the Candidate Set: The goal of this process
is to obtain a set S of CGNN candidates that includes the final
results. We assume that there are c query points with respect
to Q, and the acquisition of S consists of the following steps.

We obtain the first NN, denoted by o1qi , from Ri for each
qi ∈ Q, and place each into its own expansion list Ei. We
then check whether there are j intersections among E1 to Ec.
If not, we continue to expand the search space for the query
point qi in sequence.

Note that before retrieving the NNs for each qi, we can
simply arrange all corresponding objects in the result set Ri

generated by Algorithm 2 in ascending order of the network
distance. After okqi is retrieved, we place it at the end of the
expansion list Ei, which is actually an ordered list of qi’s NNs,
i.e., Ei={o1qi , o

2
qi , . . . , o

k
qi}. This phase stops when there are

j intersections among E1 to Ec, i.e., | ∩ci=1 Ei| = j, which
means that we have identified a set CO of the first j common
objects included in the expansions of all qi. Here, CO is the
set of current best CGNN candidates; then, we can compute
the total network distance distsum(oj , Q) between the j-th
common object oj and the query points Q, denoted by dstj .

Theorem 2: Once the j-th common object oj in the expan-
sions of all qi is identified, i.e., ∩ci=1Ei={o1, o2, . . . , oj}, the
top-j CGNNs are contained in S = ∪ci=1Ei.

Proof: Suppose that o′ is one of the CGNNs and that o′ /∈S.
Because o′ /∈S, o′ /∈Ei, and Ei is an ordered list of qi’s NNs
(i.e., ∀o ∈ Ei, dist(o, qi) is monotonically nondecreasing),
dist(o′, qi)≥ dist(o, qi) for each qi ∈Q. (1) If dist(o′, qi)>
dist(o, qi), we derive distsum(o′, Q)> distsum(o,Q). How-
ever, oj is already included in S. This indicates that o′

cannot be among the top-j CGNNs, which contradicts our
assumption. (2) If dist(o′, qi) = dist(o, qi), dist(o′, qi) is
equivalent to the network distance between the last object in Ei

and qi. If the last object in every Ei is oj , then oj can represent
o′; otherwise, distsum(oj , Q) < distsum(o′, Q), such that o′
cannot be among the top-j CGNNs. �

Algorithm 3 details the acquisition of the candidate set
(Lines 1-9). For each query point qi, the algorithm finds the
first NN and adds it to the expansion list Ei for that query
point. In addition, each query point is inserted into a min-heap
(H) with weight dist(qi, o1qi) (Lines 2-3). Then, we obtain
the next NN (e.g., o′) of the top element in H and insert
it into the corresponding expanded set Ecur of the current
query point qcur. We also update the weight of qcur in H to
dist(qcur, o

′). These procedures are repeated until there are
j common objects in the expansion lists for all query points

Algorithm 3: ObtainCandidates(Q,R)

Input: Q : query points; R : objects of network distances
Output: S : candidate set; CO : common objects; dstj : total

network distances of oj to Q
1 H :=∅; S :=∅; dstj :=∞; CO :=∅;
2 foreach qi ∈ Q do
3 Get o1qi ∈Ri; Ei = {o1qi}; H.push(〈qi, dist(qi, o1qi)〉);
4 while | ∩ci=1 Ei| < j do
5 e←Min(H); qcur :=e.q; get qcur’s next NN o′∈Rcur;
6 Ecur :=Ecur∪{o′}; H.push(〈qcur, dist(qcur, o′)〉);
7 foreach o ∈ ∩ci=1Ei do
8 CO :=CO ∪ 〈o, distsum(o,Q)〉;
9 return S :=∪ci=1Ei; dstj :=distsum(oj , Q); CO;

(Lines 4-6). Once the set CO of common objects has been
constructed, the total network distance dstj between oj and
Q is returned (Line 9).

q1

o6
o5

o4

o8

o1
q3

q2

Fig. 5. Outline of network distances.

Example 5: Consider a query q=〈Steve, 3, “cafe”, 10, 2〉.
An outline of the network distances between Q (at r7, r15,
and r11) and the eligible objects is shown in Fig. 5. We
now obtain the first NN for each qi ∈ Q, i.e., E1 = {o5},
E2={o5}, E3={o6}, and H={〈q1, 1.5〉, 〈q2, 2.5〉, 〈q3, 2.5〉}.
The expansion of Q continues until 2 common objects are
found. At this point, E1 = {o5, o6, o8, o4}, E2 = {o5, o4},
E3 = {o6, o5, o4}, and H = {〈q2, 4.2〉, 〈q1, 4.5〉, 〈q3, 5.5〉}.
Thus, S = {o4, o5, o6, o8}, and CO = {〈o5, 7.5〉, 〈o4, 14.2〉},
where dst2=14.2. �

2) Verification: Our objective is to retain qualified objects
that will be among the top-j CGNNs from the candidate set
S. That is, if there are only j objects in S, then they are the
CGNNs we seek. We now present our verification techniques
in detail. Before verifying objects from S, we select a query
point qi according to a certain expansion order of the query
points Q to retrieve the next NN and then compute dst =∑c

i=1 dist(qi, oi), where

oi =

{
o′ if o′ ∈ Ei;
o1qi otherwise.

(4)

If dst > dstj , we calculate the set E′i for each qi.

E′i=

{
{o|o∈Ei, dist(qi, o)<dist(qi, o

′)} if o′∈Ei;
∅ otherwise.

(5)

Then, let S′ = ∪ci=1E
′
i. For all o /∈ S ∩ S′, object o can be

discarded from S, as stated in Theorem 3.

Theorem 3: Let o′ be the next NN of a query point, and let
dst=

∑c
i=1 dist(qi, oi). If dst > dstj and ∀o /∈ S ∩ S′, it is

verifiable that object o is not among the CGNNs and can be
discarded from S.

Proof: For each i such that o′ ∈ Ei, because o /∈
S ∩ S′ and o /∈ E′i, we have dist(qi, o) ≥ dist(qi, o

′)

Algorithm 4: Verification(H,S,CO,R)

Input: H :min-heap; S : candidate set; CO : common objects;
R : objects of network distances

Output: CGNNs
1 while |S| > j do
2 e←Min(H); qcur :=e.q; get qcur’s next NN o′∈Rcur;

3 dst = Σc
i=1∧o′∈Ei

dist(o′, qi) + Σc
i=1∧o′ /∈Ei

dist(o1qi , qi);

4 if dst>dstj then S :=S∩(∪ci=1E
′
i); {o′}→Ecur;

5 else
6 {o′}→Ecur;
7 if o′ ∈ ∩ci=1Ei then
8 Update S and CO; 〈oj , dstj〉 ← Sort(CO);
9 if ∃t ∈ UP and t.dist > dstj then

10 E′
i← t.Ei;S :=S ∩ (∪ci=1E

′
i);UP \{t};

11 else UP .push(〈o′, dst, E1, E2, . . . , Ec〉);
12 H.push(〈qcur, dist(o′, qcur)〉);
13 return CGNNs :=S;

by the definition of E′i. Similarly, for each i such that
o′ /∈ Ei, dist(qi, o) ≥ dist(qi, o

1
qi). Since dst =∑c

i=1∧o′∈Ei
dist(qi, o

′)+
∑c

i=1∧o′ /∈Ei
dist(qi, o

1
qi), we have∑c

i=1 dist(qi, o) ≥ dst, i.e., distsum(o,Q) ≥ dst. Thus,
distsum(o,Q) > dstj because dst > dstj . Hence, object o
is not among the CGNNs and can be discarded from S. �

If dst≤dstj , we need only to place qi’s next NN o′ into its
expanded set Ei and then determine whether o′ is included in
the expansions of all query points. If so, we replace 〈oj , dstj〉
with 〈o′, dst〉 in the set of common objects, i.e., CO, where we
update dstj with the newly elected oj after sorting; otherwise,
we save an entry consisting of o′, the corresponding dst, and
every current Ei in the unpruned set UP . Note that this action
enables us to continue verifying the qualified o remaining in
S with both the expanding and backtracking strategies based
on up-to-date dstj and not-yet-validated entries in UP . We
proceed in this way until there are only j objects in S, which
are the top-j CGNNs.

In Algorithm 4, Line 2 first extracts the head of min-heap
H and obtains its next NN in every round. Then, we apply our
verification strategies to speed up the CGNN query processing.
The value of dst is the lower bound on the total network
distance from o′ to all query points (Line 3). Line 4 verifies
the objects that cannot be CGNNs by taking the intersection of
S with the union of the E′i. If dst≤dstj and o′ is a common
object, then Line 8 updates the current set CO and dstj . Line
12 updates the weight of qcur in H . In Lines 9-10, we use the
backtracking verification method to accelerate the convergence
of the qualified objects retained from S.

Example 6: Continuing Example 5, we obtain q2’s next
NN o8 from R2, and dst = dist(q1, o8) + dist(q2, o8) +
dist(q3, o6) = 11.3. Since dst < dst2, we insert o8 into E2

(i.e., E2 = {o5, o4, o8}), push 〈o8, 11.3〉 with each current
Ei into UP , and update H = {〈q1, 4.5〉, 〈q3, 5.5〉, 〈q2, 4.8〉}.
Next, we obtain q1’s next NN o1 from R1 and dst =
dist(q1, o1)+dist(q2, o5)+dist(q3, o6) = 11. Now, we have
E1 = {o5, o6, o8, o4, o1}, push 〈o1, 11, E1, E2, E3〉 into UP ,
and update H={〈q2, 4.8〉, 〈q3, 5.5〉, 〈q1, 6〉}. Then, we obtain
q2’s next NN o6 and dst = dist(q1, o6) + dist(q2, o6) +
dist(q3, o6)=10.5. Because dst<dst2 and o6 ∈∩3i=1Ei, we
discard o4 from S (i.e., S = {o5, o6, o8}) and update CO =
{〈o5, 7.5〉, 〈o6, 10.5〉}; we now have dst2=10.5. Since there

is an entry in UP with dst>dst2, e.g., 〈o8, 11.3, E1, E2, E3〉,
we can obtain E′1, E′2 and E′3 in accordance with the
corresponding object and Ei of that entry: E′1 = {o5, o6},
E′2 = {o5, o4}, and E′3 = ∅ such that S′ = {o4, o5, o6} and
S∩S′={o5, o6}. Thus, the verified objects o5 and o6 are the
top-2 CGNNs. �

Correctness and complexity. By Theorem 2, the set Aq of
top-j CGNN objects surely belongs to S. Thus, only objects
that cannot be in Aq are pruned by Theorem 3, and we will
obtain the accurate top-j objects in response to a CGNN query
because the entire verification process of Algorithms 3 and 4
corresponds to the expansion of the set Ri of objects within
ε for each query point, requiring at most |R| operations.

IV. OPTIMIZATION METHODS

In this section, we present four optimization methods to im-
prove the CGNN query processing performance. Section IV-A
presents an efficient algorithm for reducing the search space
before finding the most cohesive k-core. Section IV-B develops
a road network index, based on which we can progressively
find the closest object candidates from each query point. Sec-
tion IV-C proposes a novel technique for rapidly obtaining the
candidate set. Section IV-D introduces a round-robin technique
for increasing the overall CGNN query efficiency.

A. Social-distance-based Pruning (SD)

The pruning effect with k-core decomposition [7] alone is
not significant. If we can identify vertices that must not appear
in the query results, it may greatly reduce the search space
and computational complexity. We assume that the coreness
of the most cohesive k-core must be no less than 2; otherwise,
retrieving only G1

s(uq, c) becomes less meaningful. From this
perspective, we regard the shortest social distance as the
minimum number of edges between two vertices.

Theorem 4: Given a social network Gs, v ∈ Vs must not be
contained in Gkmax

s (uq, c) if the shortest social distance from
v to uq is no less than c−1.

Proof: Suppose that v ∈ Vs is a vertex with a shortest
social distance to uq of no less than c−1 and is contained
in Gkmax

s (uq, c). Then, there are at least c−1 edges between
v and uq in Gkmax

s (uq, c); i.e., the path from uq to v passes
through at least c−2 vertices. This implies that the coreness
of Gkmax

s (uq, c) is 1, contradicting our assumption. �

Based on Theorem 4, a social distance pruning strategy is
proposed to refine the cardinality of the potential candidate set
by eliminating more distant vertices before finding the most
cohesive k-core. Given a query user uq and a constant c, we
construct a breadth-first search (BFS) tree rooted at uq; then,
vertices at a tree height of at least c−1 can be pruned directly
(the tree height is 0 at the root). When this pruning strategy
is used to delete vertices, the degree of the remaining vertices
in the underlying social network changes, and more vertices
can then be pruned through k-core decomposition [7].

Example 7: Suppose that we wish to find Gkmax
s (s18, 4), a

BFS tree rooted at s18, as shown in Fig. 6(a). Vertices with
a tree height of no less than 3, i.e., s11, s13, s14, s15, and
s24, can be pruned by Theorem 4. Furthermore, s12 can be
pruned via k-core decomposition since its degree falls from 5

s17

s18

s22s20

s12

s16 s23

s19

s11 s13 s14 s15 s24

s21 s27 s26

0

1

2

3

(a) BFS tree rooted at s18.

s18

s17

s20

s21

s22

s23

s26

s27

s17

s20

s21

s22

s27
s18

(b) G3
s and G2

s .

Fig. 6. Social-distance-based pruning.

(in Fig. 2) to 1. Finally, G3
s and G2

s, both containing s18, are
obtained as shown in Fig. 6(b). �

B. Road-network-based Indexing

To perform the range search described in Section III-C more
efficiently, we adopt a road network index IRN , based on
which we can progressively find the closest objects within
the network distance threshold ε from each query point.

We first construct a new road network G′r = (V ′r , E
′
r) from

Gr as follows. Let V ′r = Vr ∪O. We add all edges in Er that
do not contain an object in O to E′r with the same weight. The
edges in Er that contain one or more objects, are subdivided
into multiple sub-edges depending on the number of objects;
the weights of the resulting sub-edges are proportional.

Index structure. We adopt a state-of-the-art hierarchical tree
structure [5] to index the road network G′r. Initially, let G′r
be the root and partition it into f equal-sized subgraphs as
children. Next, we recursively partition the children and repeat
this step until each leaf-node’s subgraph has no more than τ
vertices. During partitioning, for each subgraph, we will add
its borders into the corresponding node.
IRN is a balanced search tree with the following properties.

(1) Each node of IRN represents a subgraph, and the root
corresponds to G′r. The subgraph represented by a parent node
is a supergraph of those represented by its child nodes. All
subgraphs at the same level of IRN compose a partition of
G′r; i.e., any two such subgraphs are disjoint, and their union
is G′r. (2) Each nonleaf node has f(≥2) children. (3) Each leaf
node contains at most τ(≥ 1) vertices. All leaf nodes appear
at the same level. (4) Each node has a border set (the set of
vertices at the boundary of a partition) and a distance matrix.
In the distance matrix, for a nonleaf node, the columns/rows
are all borders of its children, and the value of each entry is
the network distance between two borders; for a leaf node,
the rows are all borders and the columns are all vertices for
this node, and the value of each entry is the network distance
between a border and a vertex. (5) The occurrence list (i.e.,
L(n)) for a leaf node is the list of objects in this node; for a
nonleaf node, it is the list of its children that contain objects.

Example 8: Fig. 7(b) shows the tree IRN for a road network
Gr. Each nonleaf node corresponds to a subgraph of Gr; e.g.,
G2

r corresponds to the right subgraph in Fig. 7(a). The borders
of each node are shown in the rectangular boxes under that
node. For instance, G2

r has 3 borders {r3, o5, r13}, and its
distance matrix is listed beside it. The vertices of each leaf
node are shown in rounded rectangles; e.g., G6

r has 2 borders
{r13, r15} and 6 vertices {r13, o4, r15, r14, o1, r16}. �

While traversing IRN , we use a priority queue PQi to
maintain the nearest objects to each qi ∈ Q. First, we locate the
leaf node of qi and objects O∗ with leaf(n) and construct the
occurrence list in a bottom-up manner. Initially, we calculate
the network distance from every object o ∈ L(leaf(qi)) to

r2

r7

r3

r4

r5

r6

o6

o5

o4

o8

o1

r1

r8

r9
r10

r11

r12

r13

r14

r15

r16
o2

o3

o7
Gr
3

Gr
4

Gr
5

Gr
6

Gr
1

Gr
2

(a) Graph partition.

Gr
0

Gr
2

r3 o5 r13

Gr
3

r2 r7 r8

Gr
4

o3 r11

Gr
5

r3 r6

Gr
6

r13 r15

r1 o7 r2
r7 o6 r8

o3 r11 r12
r9 o2 r10

r3 o8 r4
r5 r6 o5

r13 o4 r15
r14 o1 r16

Gr
1

r2 r7 r11

r3 o5 r13Gr
2

0 4.5 6r3

4.5 0 4.5o5

6 4.5 0r13

o5

(b) Index tree IRN .

Fig. 7. Road network index.

qi, and we place 〈o, dist(qi, o)〉 in PQi. Next, we iteratively
dequeue the first element 〈e, dis〉 of PQi and address it
separately according to whether e is an object or a node. This
process continues until an element with a dis greater than ε
is dequeued from PQi, indicating that all objects within the
network distance threshold ε in Ri have been retrieved. The
same condition applies for a directed road network.

Example 9: Continuing Example 4, the range search process
based on IRN is as follows. First, we construct the occurrence
list L based on {o1, o4, o5, o6, o8}, access G5

r= leaf(r6) as the
current node pointer Tn, and determine the minimum network
distance Tmin from q1 to each border within Tn; here, Tmin=
0 since r6 is a border. Next, we push dist(r6, o5) = 3.5 and
dist(r6, o8)=3.8 into PQ1 as o5, o8∈L(G5

r). Now, because
3.5>Tmin, we update Tn to G2

r and Tmin=dist(r6, G
2
r)=3.5

and push dist(r6, G6
r)=1 into PQ1 as G6

r∈L(Tn). Then, we
access G6

r , and push dist(r6, o4)=5.2 and dist(r6, o1)=7.5
into PQ1 as o4, o1 ∈ L(G6

r). We now insert 〈o5, 3.5〉 into
R1 because 3.5≤ Tmin. Because dist(r6, o8)> Tmin, Tn is
updated to G0

r , Tmin=∞, and dist(r6, G1
r)=5 is pushed into

PQ1 as G1
r ∈L(Tn). Finally, we insert 〈o8, 3.8〉 into R1 and

terminate the process because dist(r6, G1
r)>ε. �

C. Rapid Acquisition of the Candidate Set

As described in Section III-D1, a strategy of progressive
outward expansion from each query point is employed to
obtain the candidate set. However, according to Theorem 2,
we actually need only the first j common objects in the
intersection of all expansion lists Ei. Accordingly, we propose
an optimization process to rapidly obtain the candidate set.

Theorem 5: For all common objects O′ in ∩ci=1Ri, if we can
determine the j-th smallest maximum network distance (i.e.,
distmax(ojsm, Q)) from an object ojsm ∈O′ to each qi ∈Q,
then we can construct E∗i consisting of the objects in Ri with
network distances no greater than distmax(ojsm, Q), and the
candidate set S∗ is the union of all these E∗i .

Proof: Here, we need only to prove that the object oj in The-
orem 2 is identical to ojsm and that S⊆S∗. Suppose that o′ is a
common object in the expansions of all qi∈Q that is different
from oj . If o′ is added after oj , we can easily deduce that
distmax(o

′, Q) > distmax(oj , Q) from the properties of the
min-heap H in Algorithm 3. The same argument applies when
o′ is added before oj since oj is the j-th common object added
to the expansions of all qi, or equivalently, distmax(oj , Q)
is the j-th smallest maximum network distance among all
distmax(o

′, Q). Because all objects within a distance ε of qi
are contained in Ri, i.e., o′∈O′, the j-th smallest maximum
network distance among all distmax(o,Q),∀o ∈O′, is equal
to distmax(oj , Q), i.e., distmax(ojsm, Q)=distmax(oj , Q).
oj may have been identified before all entries have been

expanded to a distance no greater than distmax(oj , Q) in H;

in other words, we may find oj with high probability when an
entry is expanded to a distance of distmax(oj , Q) in H for
the first time. However, E∗i consists of the objects in Ri with
network distances no greater than distmax(ojsm, Q), which
means that Ei ⊆ E∗i . Thus, we can conclude that S ⊆ S∗

without any effect on the top-j CGNNs. �

Example 10: In Example 5, the second common object o4 is
identified when 〈q1, 4.5〉 is expanded. While distmax(o4, Q)=
5.5, by Theorem 5, E∗2 = {o5, o4, o8} because dist(q2, o8) =
4.8<5.5, with E∗1 and E∗3 unchanged from E1 and E3. Thus,
S∗ is identical to S since o8 is already contained in S. �

D. Round-robin Optimization
As illustrated in Section III-B, the CE algorithm places

every possible expansion into a queue, and both the Lc and Li
strategies may be repeatedly executed until the top-j objects
are found for the current user group in a CGNN query. If any
selected user can be identified as unlikely to be included in
the most cohesive k-core, the search space can be reduced
in both the social and spatial domains, and the overall query
performance can be improved. In this section, we first deduce
an intrinsic distance restriction between query points and then
apply this restriction to the maximal f(·) value in the heuristics
before a tie in social distance can arise. The procedure is
repeated in a round-robin fashion; in other words, the intrinsic
distance restriction is re-applied with respect to each selected
vertex until the valid most cohesive k-core is obtained. On
the one hand, this allows us to filter the invitees to reduce
the diversity of the generated candidates, eliminating the need
to find and verify objects for Gkmax

s (uq, c) that are qualified
in terms of social connections but not locations. On the
other hand, the intrinsic distance restriction consolidates the
attendees such that the objects of interest will be relatively
close; thus, the acquisition of the candidate set S is sped up.

Theorem 6: The network distance between the locations of
each pair of users from Gkmax

s (uq, c) in road network Gr must
be less than or equal to 2ε.

Proof: For any object o ∈ Aq among the top-j object-
s, distmax(o,Q) ≤ ε. Consider two users um and un in
Gkmax

s (uq, c); the network distance between their location-
s, Ls(um) and Ls(un), in Gr is greater than 2ε. Then,
dist(o, Ls(um)) + dist(o, Ls(un)) ≥ dist(Ls(um), Ls(un))
due to triangular inequality, that holds iff o is on the least cost-
ly path from Ls(um) to Ls(un). Hence, distmax(o,Q) must
be greater than ε because dist(o, Ls(um))+dist(o, Ls(un))>
2ε, which contradicts our precondition. �

Example 11: Continuing Example 3, if ε = 4, we can
calculate dist(r3, r9) = 9 > 2ε from IRN because s21 and
s26 are at r3 and r9, respectively. By Theorem 6, H2 in Fig. 4
can be discarded via Lc or Li instead of during verification.
Thus, only Gs(H1) is a valid solution for the most cohesive
k-core. �

V. EXPERIMENTAL EVALUATION

This section evaluates the effectiveness and efficiency of our
algorithms through comprehensive experiments.

4http://snap.stanford.edu/data/index.html
5https://www.cs.utah.edu/ lifeifei/SpatialDataset.htm
6http://www.dis.uniroma1.it/challenge9/index.shtml

TABLE II
STATISTICS OF THE DATASETS

Dataset Vertices Edges dgavg dgmax h
California 21,048 21,693 1.03 8 -
San Francisco 174,956 223,001 2.55 8 -
Florida 1,070,376 1,356,399 2.53 12 -
Western USA 6,262,104 15,248,146 2.43 14 -
Facebook 4,039 88,234 43.69 1,045 8
Brightkite 58,228 214,078 7.35 1,134 17
Gowalla 196,591 950,327 9.67 14,730 15
Orkut 3,072,441 117,185,083 76.28 33,313 7
Twitter 17,069,982 476,553,560 55.84 109,214 8

A. Experimental Setting
Datasets. Five real-life social networks4, Facebook (FB),
Brightkite (BR), Gowalla (GO), Orkut (OR) and Twitter (TW),
and four real road networks5,6, California (CA), San Francisco
(SF), Florida (FL) and Western USA (WU), are investigated in
our experiments. CA and SF contain detailed street networks,
whereas FL and WU consist only of highways and main roads.
The statistics of these datasets are presented in Table II, where
h denotes the average longest social distance.

We map each user vs to the location vr in the road network
that matches the scale of his/her social network as follows:
We first project the spatial locations into the range [0, 1]
in each dimension, and we generate Ls(vs) randomly (or
by drawing from recent check-ins). If vr has the smallest
Euclidean distance to Ls(vs) in the projection space, we
assume that vr is the current location of vs.

Algorithms. To our knowledge, no previous works have inves-
tigated the CGNN problem on general road-social networks.
In this paper, we implement and evaluate a baseline algorithm,
two advanced algorithms and the round-robin-based algorithm
as described in Table III. Since the CE algorithm introduced
in Section III-B is relatively slow even on a small road-social
network, as illustrated by Exp-1 and Exp-2, we employ the
optimal heuristic selection strategy Li as the baseline algorithm
in this empirical study on the problem of finding the most
cohesive k-core and verifying the top-j objects. In Table III,
we also define the abbreviation for each technique used in the
considered algorithms.

Parameters. We conducted experiments in different settings
by varying six parameters, including the number of attendees
c, the number of qualified objects j, the network distance
threshold ε, the degree distribution of uq , the difference
kini−kmax (kini = cn(Cmax(uq, c))), and the object ratio.
The default values of c and j were 4 and 3, respectively, and
the average degree of uq was 11-20; in CA, SF, FL and WU,
the respective default values of ε were 1, 4, 40 and 150 km,
and the default object ratios were 0.1, 0.1, 0.01 and 0.01.

All programs were implemented in standard C++ and com-
piled with G++ in Linux. All experiments were performed on
an Ubuntu Linux System with an Intel Xeon E7-4820 2 GHz
CPU and 1 TB of memory.

B. Performance Evaluation
We investigate the efficiency of all algorithms listed in

Table III, and then compare each under different settings.
The results shown for each experiment are the average of 50
independent tests.

Exp-1: We evaluated the exact algorithm and the two
heuristics for finding the most cohesive k-core described in

TABLE III
SUMMARY OF ALGORITHMS

Technique Description
SD social-distance-based pruning (Theorem 4)
εNN range search for nearest neighbors within a threshold ε

by the road network index (Section IV-B)
RC rapid acquisition of the candidate set (Theorem 5)
IR intrinsic distance restriction between users in Q (Theo-

rem 6)
Algorithm Description
Baseline baseline method; consists of SD, the Li selection strategy

(Theorem 1 and Equation 3), the range filter (Algorith-
m 2), and verification techniques (Theorems 2 and 3)

Adv1 Adv1=Baseline+RC; the acquisition of the candidate set
S during the verification process (Theorem 2) is replaced
with the rapid technique (Theorem 5)

Adv2 Adv2=Baseline+εNN+RC; the objects within the thresh-
old distance ε are computed with the εNN strategy instead
of the range filter (Algorithm 2) in addition to the
modification adopted in Adv1

RR round-robin-based method; incorporates IR (Theorem 6)
into the Li selection strategy (Algorithm 1) for alternative
validation in addition to the modifications in Adv2

Section III-B, namely, CE, Lc and Li, on the five social
networks for c = 4 and c = 32. The accuracy (%Lc or %Li)
is 1 if the entire user group obtained by Lc/Li is included in
the CE results; otherwise, it is proportional to the number of
users included. Fig. 8 indicates that CE is three to four orders
of magnitude slower than the other two methods, especially
when c is large, because CE enters the next iteration if it fails
in the current round, while Lc/Li ends once the size expands
to c. Although FB is small, CE takes more time on it than on
BR or GO because SD depends on the social distance and c. As
shown in Table II, h=8 in FB, which is sufficient to support
good SD performance only for c≤9. The average accuracies
of Lc and Li are essentially stable at approximately 0.9, but
Li is nearly an order of magnitude faster. Thus, Li is selected
for the Baseline algorithm for CGNN queries.

0.92 0.950.98 0.95 0.96 0.94 0.95 0.92 0.89 0.92

0.01

0.1

1

10

100

FB BR GO OR TW

R
u

n
n

in
g

 T
im

e
(s

) %Lc %Li CE Lc Li

(a) c = 4

0.84 0.850.85 0.82 0.8
0.88 0.84 0.85 0.83 0.8

0.1

1

10

100

1000

10000

FB BR GO OR TW

R
u
n

n
in

g
 T

im
e

(s
) %Lc %Li CE Lc Li

(b) c = 32

Fig. 8. Query performance and accuracy between CE and heuristics.

Exp-2: We examined kini−kmax, representing the difference
between cn(Cmax(uq, c)) and the coreness of the attendees,
with respect to c and the various social networks. As shown in
Fig. 10(a), all curves increase with increasing c on FB; even
the bars (e.g., kCE

max, denoting the coreness kmax retrieved by
CE) increase because with more attendees, guaranteeing their
social connections is a greater challenge. Fig. 10(b) shows that
the curves of Lc and Li are very close for the various social
networks with c=16. This experiment again demonstrates the
effectiveness of Lc/Li for CGNN queries.

Exp-3: We explored the CGNN query performance of four
algorithms, namely, Baseline, Adv1, Adv2 and RR, on
real-world social-road networks for c=4 and c=64. Fig. 11
shows that the algorithms can satisfy user requirements for
different numbers of attendees and that the query performance
is rather stable as the scale of the road-social network varies.

Exp-4: We examined the query processing time with respect

3
6

11

24

2.9
5.5

10

22.8

2.8
5.2

9.6

22

0

2

4

6

4 8 16

k
in
i-
k
m
a
x

32

kmax
CE

kmax
Li

Lc

kmax
Lc

CE

Li

c

(a) FB

11
8

10
13 12

10
7.3 8.6

12 11
9.6

7.2 8.2
11 10.3

0

1

2

3

4

5

6

7

FB BR GO OR TW

k
in
i-
k
m
a
x

kmax
CE

kmax
Li

Lc

kmax
Lc

CE

Li

(b) c = 16

Fig. 10. kini−kmax with respect to c between CE and heuristics.

0

2

4

6

8

10

12

R
u
n

n
in

g
 T

im
e

(s
) Baseline Adv1

Adv2 RR

(a) c = 4

0

40

80

120

160

R
u

n
n

in
g

 T
im

e
(s

) Baseline Adv1
Adv2 RR

(b) c = 64

Fig. 11. Scalability.

to the number of attendees on scale-commensurate road-social
networks: FB+CA, FB+SF, BR+CA, BR+SF, GO+SF, GO+FL,
OR+FL, OR+WU, TW+FL and TW+WU. Fig. 9 shows the results;
all curves increase as c increases. As long as Lc is fast enough,
optimizations of the road network dominate the CGNN query
efficiency. The more invitees there are, the more objects need
to be validated. Among the algorithms, Adv2 and RR are
superior to the other two; in particular, RR is twice as fast
as Baseline because εNN uses the distance matrix of IRN

and IR prunes unpromising invitees, eliminating the need for
multiple rounds of unnecessary object lookups.

Exp-5: We evaluated the efficiency and efficacy of the 4
algorithms for varying ε with the other parameters set to the
default. In Fig. 12, all curves (running times) are rising, and the
bars (numbers of candidates and visited objects) also rise with
increasing ε. Although the number of candidate objects |S∗|
obtained by RC in Adv1, Adv2 and RR is slightly larger than
that (|S|) in Baseline, expansion of the next NN is avoided.
In Adv2 and RR, εNN significantly accelerates the acquisition
of objects within ε, but the effect of IR is less prominent for
larger ε. Moreover, the number of visited objects is always
smaller than |S| or |S∗| due to our verification technique,
which discards most candidate objects.

17 31 44 53 72
22 39

83
145

184

26 47
95

159
208

0

2

4

6

8

10

4 8 12 16

R
u
n
n
in

g
 T

im
e

(s
)

Ɛ (km)

|S|
Baseline

Adv2

#Visited Objects

|S*|
Adv1
RR

20

(a) GO+SF

26 32 45 73
116

45 65 94
155

211

52 71 103
167

234

0

3

6

9

12

15

18

21

20 40 60 80

R
u
n

n
in

g
 T

im
e

(s
)

Ɛ(km)

|S|
Baseline
Adv2

#Visited Objects

|S*|
Adv1
RR

100

(b) OR+FL
Fig. 12. Query performance with respect to ε.

Exp-6: We examined the effect of j, as shown in Fig. 13,
with the other parameters set to the default. Because c = 4,
Adv1 is approximately equivalent to Baseline, and the
same is true for Adv2 and RR. Here, the query performance
is dominated by the road network techniques because finding
the top-j objects requires only a few seconds due to the
small values of c and ε; in particular, RR is twice as fast as
Baseline. In addition, the number of candidate objects (|S|
in Baseline and |S∗| in the others) increases with increasing
j, but the number of visited objects remains almost unchanged.

Exp-7: We evaluated kmax with respect to the degree

0

20

40

60

80

4 8 16 32

R
u

n
n

in
g

 T
im

e
(s

)

64

Baseline Adv1

Adv2 RR

c

(a) FB+CA

0

20

40

60

80

4 8 16 32 64

R
u

n
n

in
g

T
im

e
(s

)

c

Baseline Adv1

Adv2 RR

(b) FB+SF

0

10

20

30

40

50

60

4 8 16 32

R
u

n
n

in
g

 T
im

e
(s

)

64

Baseline Adv1

Adv2 RR

c

(c) BR+CA

0

20

40

60

80

4 8 16 32 64

R
u

n
n

in
g

 T
im

e
(s

)

c

Baseline Adv1

Adv2 RR

(d) BR+SF

0

20

40

60

80

4 8 16 32

R
u

n
n

in
g

 T
im

e
(s

)

64

Baseline Adv1

Adv2 RR

c

(e) GO+SF

0

20

40

60

80

100

4 8 16 32 64

R
u

n
n

in
g

 T
im

e
(s

)

c

Baseline Adv1

Adv2 RR

(f) GO+FL

0

35

70

105

140

4 8 16 32 64

R
u
n
n

in
g
 T

im
e

(s
)

c

Baseline Adv1

Adv2 RR

(g) OR+FL

0

30

60

90

120

150

4 8 16 32

R
u

n
n

in
g

 T
im

e
(s

)

64

Baseline Adv1

Adv2 RR

c

(h) OR+WU

0

20

40

60

80

100

120

4 8 16 32

R
u
n

n
in

g
 T

im
e

(s
)

64

Baseline Adv1

Adv2 RR

c

(i) TW+FL

0

30

60

90

120

150

4 8 16 32

R
u
n
n

in
g
 T

im
e

(s
)

64

Baseline Adv1

Adv2 RR

c

(j) TW+WU
Fig. 9. Query processing time with respect to c.

17 28 54 83 112

23 43
88

145
184

26 48
93

169 198

0

2

4

6

8

10

2 4 6 8

R
u
n

n
in

g
 T

im
e

(s
)

10

|S|
Baseline
Adv2

#Visited Objects

|S*|
Adv1
RR

j

(a) GO+SF

25 28 64 87
132

33 43
98 132

204

38 48
112 145

208

0

4

8

12

16

20

2 4 6 8

R
u

n
n

in
g

 T
im

e
(s

)

10

Baseline
Adv2

#Visited Objects |S|
|S*|
Adv1
RR

j

(b) OR+FL
Fig. 13. Query performance with respect to j.

distribution of uq , representing the variation of c, in the five
social networks, as shown in Fig. 14. kmax increases when
the degree distribution of uq spans a larger interval, which
corresponds to CE/Lc/Li finding the maximum coreness in
Cmax(uq, c). For FB, OR and TW, kmax is always close to
the upper bound of the interval, followed by GO. From the
average degrees in Table II, we conclude that FB, OR and TW
are of relatively high density, affecting the performance of SD.

0

20

40

(0,10] [11,20] [21,30] [31,40]

k m
a
x

degree of uq

FB BR GO OR TW

Fig. 14. Variation in kmax with the degree distribution of uq .

Exp-8: We examined the kmax of the most cohesive k-
core and the total travel cost distsum of the attendees for
the top-1 object with respect to c. In Fig. 15, kmax and
distsum increase with increasing c, but the average travel
cost per attendee (distsum/c) is essentially steady because
ε controls the network distance from each attendee to the
optimal assembly point.

3 6
10

15
22

0

20

40

60

4 8 16 32

d
is
t s
u
m
(k
m
)

64

kmax distsum

c

(a) GO+SF

3
7

13

24
29

0

50

100

150

200

250

4 8 16 32

d
is
t s
u
m
(k
m
)

64

kmax distsum

c

(b) OR+FL
Fig. 15. distsum and kmax with respect to c.

Exp-9: We evaluated the effect of the ratio of the number
of objects to the number of edges, Er, as shown in Fig. 16.
This ratio varies from 0.001 to 1 in SF and from 0.0001
to 1 in FL. We then selected the objects with the keyword
“restaurant” within each default ε. The run times of all
algorithms decreased because with fewer objects, the objects
are more sparsely and uniformly distributed and the average
cost tends to be higher, as observed from |S| or |S∗| and the
number of visited objects.

16 21 29 53
21 32 45

81
23 35 50

87

0

3

6

9

12

15

18

21

24

0.001 0.01 0.1 1

R
u

n
n

in
g

 T
im

e
(s

)

Object Size (Ratio of |Er|)

|S|
Baseline

Adv2

#Visited Objects

|S*|
Adv1
RR

(a) GO+SF

18 21 28

83
50

24 30 44 58
86

26 36 52 64
90

0

10

20

30

40

0.0001 0.001 0.01 0.1 1

R
u
n
n
in

g
 T

im
e

(s
)

Object Size (Ratio of |Er|)

|S|
Baseline

Adv2

#Visited Objects

|S*|
Adv1
RR

(b) OR+FL
Fig. 16. Query performance with respect to the object ratio.

VI. RELATED WORK

Geo-social query processing. [11] formulates a framework
for geo-social query processing that builds queries based on
atomic operations, by which some complex queries (e.g.,
nearest friends and range friends) can be answered. Recently,
Li et al. [12] have studied spatial-aware interest group queries
in location-based social networks and presented efficient pro-
cessing algorithms. A geo-social k-cover group query [13]
retrieves a minimum user group in which each user is socially
related to at least k others and their associated regions (e.g., fa-
miliar/service regions) jointly cover all the given query points.
[14] studies the kNN search on road networks incorporating
social influence. Given a location q and a constant k, a socio-
spatial group query [15] returns an approximate group of
users such that each has no social relationship with at most k
others in the group on average and their total distance to q is
minimized. This approach focuses only on Euclidean spatial
distances, and the assembly point is designated in advance; if
queries with the same parameters are sent by diverse users,
the results are identical.
k-core. k-core computation, first introduced by Seidman

[4], is a fundamental graph problem with a wide spectrum of
applications, such as network analysis [16], graph clustering
[17], and network visualization [18]. A linear-time in-memory
algorithm for computing core numbers of all vertices in a
graph is presented in [6]. I/O-efficient algorithms for core
number computation on graphs that cannot fit in the main
memory of a machine are proposed in [19], [20]. Whether k-
core decomposition of large networks can be computed using
a consumer-grade PC is explored in [7]. Local computation
and estimation of core numbers are studied in [21], [22].
Algorithms for core number maintenance on dynamic graphs
are proposed in [23]. However, the most cohesive k-core model
is better suited to personalized user group queries (i.e., the
attendees invited by different query users are varied), and
concurrently has more desirable properties, including society,
cohesiveness, connectivity and maximization.

Nearest neighbor search. As one of the most important

queries among NN search variants, a group nearest neighbor
(GNN) query [1] retrieves the point(s) in a given set of points
P with the smallest sum of distances to all points in another
given set of points Q. An aggregate nearest neighbor (ANN)
query [2], which returns the point(s) in P that minimizes
an aggregate function with respect to Q, was subsequently
proposed as an extension of GNN query, which is equivalent
to ANN query with an aggregate function of sum exclusively.
As the methods of [1], [2] are applicable only in Euclidean
space, [24] investigated the solution of ANN queries in road
networks. However, this approach is not applicable in the case
of edge weights that are disproportionate to the corresponding
physical lengths, and the query performance is inefficient
when the scale of Q is large. Moreover, [25] addresses the
problem of ANN query monitoring for moving objects in
Euclidean space. [26] discusses ANN queries with moving
query points. [27] explores ANN queries for query points with
location privacy concerns. [28], [29] addresses ANN queries
on uncertain databases and graphs. In these works, neither the
social connectivity among the spatial query points in Q nor
textual descriptions of the spatial objects in P are considered.

Our work, being more flexible and scalable, is totally
different from that described above: (1) the assembly points
are analyzed dynamically with regard to the optimal attendees,
(2) the unique social topology can be adequately considered
due to the limited number of attendees, (3) the core number
k is self-optimized to obtain the highest familiarity, and (4)
distance restrictions based on a combination of sum and max
functions are simultaneously applied to road networks. In real
life, CGNN queries are often the most natural way to express
the requests of an activity initiator or mobile user who wishes
to organize an offline activity. To our knowledge, this paper
proposes the first practical algorithm for solving the CGNN
problem on general road-social networks.

VII. CONCLUSIONS

In this paper, we define a pragmatic query type, namely,
CGNN queries, to identify suitable spatial-textual objects as
assembly points for a group of optimal attendees over road-
social networks. To our knowledge, no previous solution has
addressed such type of scenario in automated offline activity
planning services based on the social and geographically
spatial relationship of activity attendees. We show that the
problem is nontrivial and devise an efficient framework includ-
ing effective filtering and verification techniques to reduce the
processing time. Moreover, it is shown that with optimization,
the query performance is improved and less time is required
to find the optimal solution in both social and spatial domains.
Experimental results for real-world road-social networks sig-
nificantly demonstrate that our approaches are highly scalable
and robust in both efficiency and efficacy. A possible direction
for future work is to integrate other user attributes, e.g., user
preferences, to filter the activity attendees. Potential future
research also includes joint social and road processing on
networks stored in a distributed manner.

ACKNOWLEDGMENT

Ye Yuan is supported by the National Key R&D Pro-
gram of China (NO. 2016YFC1401900), the NSFC (Grant
No. 61572119 and 61622202) and the Fundamental Research
Funds for the Central Universities (Grant No. N150402005).

Guoren Wang is supported by the NSFC (Grant No.
U1401256, 61732003 and 61729201). Lei Chen is supported
by the NSFC (Grant No. 61732003). Xiang Lian is supported
by the NSF OAC No. 1739491, and Lian Start Up No. 220981,
Kent State University.

REFERENCES

[1] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis, “Group nearest
neighbor queries,” in ICDE, 2004, pp. 301–312.

[2] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui, “Aggregate nearest
neighbor queries in spatial databases,” TODS, vol. 30, no. 2, pp. 529–
576, 2005.

[3] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing in
spatial network databases,” in VLDB, 2003, pp. 802–813.

[4] S. B. Seidman, “Network structure and minimum degree,” Social net-
works, vol. 5, no. 3, pp. 269–287, 1983.

[5] R. Zhong, G. Li, K.-L. Tan, L. Zhou, and Z. Gong, “G-tree: An efficient
and scalable index for spatial search on road networks,” TKDE, vol. 27,
no. 8, pp. 2175–2189, 2015.

[6] V. Batagelj and M. Zaversnik, “An o(m) algorithm for cores decompo-
sition of networks,” CoRR, cs.DS/0310049, 2003.

[7] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core decom-
position of large networks on a single pc,” PVLDB, vol. 9, no. 1, pp.
13–23, 2015.

[8] S. Luo, Y. Luo, S. Zhou, G. Cong, J. Guan, and Z. Yong, “Distributed
spatial keyword querying on road networks.” in EDBT, 2014, pp. 235–
246.

[9] M. Kolahdouzan and C. Shahabi, “Voronoi-based k nearest neighbor
search for spatial network databases,” in VLDB, 2004, pp. 840–851.

[10] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[11] N. Armenatzoglou, S. Papadopoulos, and D. Papadias, “A general
framework for geo-social query processing,” PVLDB, vol. 6, no. 10,
pp. 913–924, 2013.

[12] Y. Li, D. Wu, J. Xu, B. Choi, and W. Su, “Spatial-aware interest group
queries in location-based social networks,” DKE, vol. 92, pp. 20–38,
2014.

[13] Y. Li, R. Chen, J. Xu, Q. Huang, H. Hu, and B. Choi, “Geo-social k-
cover group queries for collaborative spatial computing,” TKDE, vol. 27,
no. 10, pp. 2729–2742, 2015.

[14] Y. Yuan, X. Lian, L. Chen, Y. Sun, and G. Wang, “Rsknn: knn search on
road networks by incorporating social influence,” TKDE, vol. 28, no. 6,
pp. 1575–1588, 2016.

[15] D.-N. Yang, C.-Y. Shen, W.-C. Lee, and M.-S. Chen, “On socio-spatial
group query for location-based social networks,” in SIGKDD, 2012, pp.
949–957.

[16] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“Large scale networks fingerprinting and visualization using the k-core
decomposition,” in NIPS, 2006, pp. 41–50.

[17] C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis,
“Corecluster: A degeneracy based graph clustering framework.” in AAAI,
vol. 14, 2014, pp. 44–50.

[18] F. Zhao and A. K. Tung, “Large scale cohesive subgraphs discovery for
social network visual analysis,” PVLDB, vol. 6, no. 2, pp. 85–96, 2012.

[19] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, “Efficient core decomposition
in massive networks,” in ICDE, 2011, pp. 51–62.

[20] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu, “I/o efficient core graph
decomposition at web scale,” in ICDE, 2016, pp. 133–144.

[21] W. Cui, Y. Xiao, H. Wang, and W. Wang, “Local search of communities
in large graphs,” in SIGMOD, 2014, pp. 991–1002.

[22] M. P. OBrien and B. D. Sullivan, “Locally estimating core numbers,” in
ICDM, 2014, pp. 460–469.

[23] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin, “A fast order-based approach
for core maintenance,” in ICDE, 2017, pp. 337–348.

[24] M. L. Yiu, N. Mamoulis, and D. Papadias, “Aggregate nearest neighbor
queries in road networks,” TKDE, vol. 17, no. 6, pp. 820–833, 2005.

[25] H. G. Elmongui, M. F. Mokbel, and W. G. Aref, “Continuous aggregate
nearest neighbor queries,” GeoInformatica, vol. 17, no. 1, pp. 63–95,
2013.

[26] J. Li, J. R. Thomsen, M. L. Yiu, and N. Mamoulis, “Efficient notification
of meeting points for moving groups via independent safe regions,”
TKDE, vol. 27, no. 7, pp. 1767–1781, 2015.

[27] T. Hashem, L. Kulik, and R. Zhang, “Privacy preserving group nearest
neighbor queries,” in EDBT, 2010, pp. 489–500.

[28] X. Lian and L. Chen, “Probabilistic group nearest neighbor queries in
uncertain databases,” TKDE, vol. 20, no. 6, pp. 809–824, 2008.

[29] Z. Liu, C. Wang, and J. Wang, “Aggregate nearest neighbor queries in
uncertain graphs,” WWW, vol. 17, no. 1, pp. 161–188, 2014.

