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Abstract—The group nearest neighbor (GNN) search on a road network Gr , i.e., finding the spatial objects as activity assembly points
with the smallest sum of distances to query users on Gr , has been extensively studied; however, previous works neglected the fact that
social relationships among query users, which ensure the maximally favorable atmosphere in the activity, can play an important role in
GNN queries. Meanwhile, the ratings of spatial objects can also be used as recommended guidelines. Many real-world applications,
such as location-based social networking services, require such queries. In this paper, we study two new problems: (1) a GNN search
on a road network that incorporates cohesive social relationships (CGNN) and (2) a CGNN query under multi-criteria (MCGNN).
Specifically, both the query users of highest closeness and the corresponding top-j objects are retrieved. To address critical challenges
on the effectiveness of results and the efficiency of computation over large road-social networks: (1) for CGNN, we propose a
filtering-and-verification framework. During filtering, we prune substantial unpromising users and objects using social and geospatial
constraints. During verification, we obtain the object candidates, among which the top j are selected, with respect to the qualified
users; (2) for MCGNN, we propose threshold-based selection and expansion strategies, where different strict boundaries are proposed
to ensure that correct top-j objects are found early. Moreover, we further optimize search strategies to improve query performance.
Finally, experimental results on real social and road networks significantly demonstrate the efficiency and efficacy of our solutions.
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1 INTRODUCTION

W ITH the ever-growing popularity of GPS-enabled mo-
bile devices, many location-based service (LBS) sys-

tems (e.g., Google Maps) have been deployed and widely
accepted by mobile users, who use them to easily capture
and upload their own locations during daily activities. A-
long with the widespread prevalence of LBSs, recent years
have witnessed a massive explosion in location-based social
networking (LBSN) applications, such as Yelp, Foursquare
and Facebook Places. In all these applications, social net-
work users are always associated with location information
(e.g., public places, home/office addresses) and their eval-
uations/ratings for points of interest (POIs), which can be
shared with their “friends”.

It is envisaged that such location information can bridge
the gap between the physical world and the virtual world
of social networks, and the ratings of POIs can be used as
recommended guidelines. In addition, the nearest neighbor
(NN) search and its variants on road networks are funda-
mental issues in LBSs due to their importance in a wide
spectrum of applications [1], [2], [3]. Such search capabilities
provide social network users with new opportunities for
rapidly organizing impromptu offline activities. Below is a
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Fig. 1. Example of road-social network.

typical example query scenario arising in the new context of
road-social networks.

Q1 To hold a board game party (e.g., Monopoly), Steve
hopes to gather 3 people, each of whom preferably
knows others, and to find two highly ranked cafes or
bars near everyone (e.g., within 6.5 km) as options
while minimizing the total travel distance.

Q2 Headquarters plans to invite a group (e.g., 30) of
branch managers, who better have frequent business
contacts or participated in the same projects, and to
reserve a hotel ballroom with minimum total travel
cost and no more than 10km away from the farthest
branch to hold a banquet.

As significant and substantial manual coordination is
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still required, none of the existing methods can solve the
above problem. Specifically, the challenges faced in organiz-
ing such activity lie in issuing timely invitations that specify
both optimal invitees and suitable assembly points, in accor-
dance with the closeness of a limited number of candidate
attendees and their proximity to corresponding locations in
physical world, and sometimes even the ratings of assembly
points as additional references. Intuitively, when attendee
size increases, the organization process becomes more com-
plicated and thereby too tedious to coordinate manually.
Thus, it is imperative to develop efficient new techniques to
alleviate the effort and support impromptu offline activity
planning services. The specific motivating example follows.
Example 1. Fig. 1 illustrates Q1 over a road-social network,

which is split into a social layer (Gs) and a road layer
(Gr) for clarity. The circles in Gs and Gr represent
users and road intersections/end-points, respectively. In
Gr , the rectangles denote spatial-textual objects lying
on edges, for which keyword information is listed; the
number on each edge represents travel distance on cor-
responding road segment. In Gs, the (partial) published
user location and evaluation information provides map-
pings specifying the location r ∈Gr of any user s ∈Gs
and the ratings of POIs visited. Suppose that s13 is
Steve, whose current location is r7 in Gr . Generally, high
rankings can be measured in two ways. (1) Subjectivity:
ratings are not referenced. From Steve’s perspective, he
may be advised that s12, s15, and s16 (at r15, r11, and r4,
respectively) could be invited to o5 or o8, both of which
meet his requirements of proximity 6.5 km and keyword
“cafe/bar”, with a minimum total travel distance of 13.8
or 15.8 km, respectively. However, as observed in Gs, s12
and s15 are both unacquainted with s16; in contrast, s12,
s14, and s15 (at r15, r13, and r11, respectively) know each
other best and thus are the optimal invitees. Accordingly,
o5 and o6, with minimum total travel distances of 12 and
15.5 km, respectively, are the best selections that should
be ultimately recommended to Steve. (2) Objectivity:
ratings are referenced. At this point, some POIs that are
relatively far away but have higher ratings can also be
considered and topped the list. In view of the ratings
available, we can measure the average rating of o5 at
3.5+3.9

2 =3.7 and its overall score (e.g., ratio of rating to
total travel distance) at 3.7

12 =0.31. However, both o4 and
o6 have the overall scores of 0.32 such that they are the
best selections with respect to s12, s14, s15 and Steve.

This example motivates us to consider two novel types of
queries on road-social networks, namely, (1) cohesive group
nearest neighbor queries (CGNN) and (2) cohesive group
nearest neighbor queries under multi-criteria (MCGNN),
then to propose efficient processing algorithms respectively.
Specifically, for CGNN queries, given Gs, Gr , the number
c of activity attendees (including a query user uq), and an
upper limit ε on distance/time, an activity initiator1 issues
a CGNN query that should return c attendees and the top-j
objects (i.e., assembly points) from Gr containing keywords
ω such that the travel cost of each attendee is within ε,
and the total travel cost of all attendees is minimized; for

1. To support general offline activity planning, attendees include the
query user and other invitees but not necessarily the activity initiator.

MCGNN queries, c attendees and the top-j objects contain-
ing ω should be returned such that the travel cost of each
attendee is within ε, and the overall scores of objects are
maximized under multi-criteria (e.g., ratings of POIs and
total travel cost of all attendees). It is worth mentioning that
both queries incorporate a social constraint on the closeness
of the c attendees: each invitee of uq in Gs should know the
others as well as possible.
Challenges. In this paper, for both CGNN and MCGNN
queries, we address the following three challenges. (1) Since
the number of attendees is limited to c and their closeness
is to be maximized, the social constraint among attendees
is different from the traditional k-core [4], a well-known
concept in graph theory, which is the maximal induced sub-
graph in which every vertex has at least k neighbors. Thus,
selecting of the most cohesive set of attendees is nontrivial
because of the massive number of possible combinations to
be evaluated. (2) Retrieving the total travel cost to a target
object in road networks, as opposed to geometric distances
in Euclidean space, is more complex since location and
accessibility of objects are restricted by the computation of
network distance, particularly with increasing c. (3) Both
the social and road networks are typically massive. For
example, Facebook has 1 billion users, and the USA road
network alone has more than 20 million vertices. Thus, it is
challenging to efficiently process the queries over typically
large road-social networks. Moreover, for MCGNN queries,
we have to address an additional challenge as follow: (4)
The effectiveness of results and efficiency of computation
are the keys of top-j query processing [5], [6], [7] under
multi-criteria, where we need a meaningful combining scor-
ing function that supports generality and comparability, and
a strict boundary to limit the huge search space.
Our Solution and Contributions. A simple strategy for solving
a CGNN/MCGNN query is to enumerate all combinations
of c−1 invitees of uq , select the most cohesive one(s), com-
pute the total cost/overall score for each object by traversing
Gr , and return the top-j objects within ε. However, this
strategy is obviously infeasible due to the massive costs of
enumeration and traversal.

To address the above challenges, (1) for both queries,
the most cohesive k-core model is developed to quantify
closeness and ensure the maximally favorable atmosphere,
avoiding enumeration while rapidly locating comprehen-
sive solutions that consider both social network topolo-
gy and activity scale; (2) different incremental and accu-
mulative strategies are adopted to gradually expand the
search space in road networks: while for CGNN queries,
an effective verification strategy is designed to expedite the
extraction of top-j objects among candidates (i.e., filtering-
and-verification framework); for MCGNN queries, different
strict boundaries are proposed to ensure that correct top-j
objects are found early, and an overall score upper bound
for any possible object on edge is studied to speed up query
processing; (3) for both queries, a state-of-the-art hierarchi-
cal tree structure [8] is adopted to index road networks,
allowing vertices/objects to be obtained more quickly. The
principal contributions are summarized as follows.
• We formulate two pragmatic query types on road-

social networks, CGNN/MCGNN queries, to identi-
fy suitable spatial-textual objects as assembly points
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for optimal sets of attendees. Both can accommodate
various types of offline activities of specified scales.

• We develop the first efficient algorithm for finding
the most cohesive k-core model to ensure the social
closeness of a limited number of attendees.

• Effective pruning and verification strategies, and
threshold-based selection and expansion strategies
for finding the top-j CGNNs and MCGNNs are
proposed, respectively. Optimization techniques are
designed to further improve query processing.

• We conduct extensive experiments on real-world
datasets to demonstrate the effectiveness and effi-
ciency of our proposed strategies and algorithms.

The rest of the paper is organized as follows. Section 2
formulates both CGNN and MCGNN problems. Section 3
presents algorithms for CGNN queries. Section 4 proposes
approaches for MCGNN queries. Section 5 discusses opti-
mizations. Section 6 reports experimental results. Section 7
reviews related work, and Section 8 concludes the paper.

2 PROBLEM DEFINITION

In this section, we formally define our CGNN and MCGNN
queries over road-social networks. Table 1 summarizes the
mathematical notations used throughout this paper.

2.1 Preliminaries
Road network. In this paper, a road network is modeled as
an undirected weighted graph Gr=(Vr, Er), where Vr is a
set of vertices and Er = {(u, v)|u, v ∈ Vr ∧ u 6= v} is a set
of edges. A vertex vr ∈ Vr represents a road intersection or
an end of a road, and an edge er = (u, v) ∈ Er represents
a road segment that enables travel between vertices u and
v. Each edge (u, v) is associated with a nonnegative weight
w(u, v) that represents the cost (e.g., distance or travel time)
of a corresponding road segment.

Let p be a spatial point lying on the edge (u, v). The trav-
el cost from vertex u to p, denoted by w(u, p), is assumed
to be proportional to the distance (length) between them.
For two given points u and v in Gr , we use dist(u, v) to
represent the network distance (cost) between u and v, which
is the sum of the edge weights along the least costly path
from u to v. Note that the least costly path corresponds to
the shortest path if the edge weight represents the distance.

A spatial-textual object2 o ∈ O is described by a spatial
point and a set of keywords from a vocabulary, denoted by
o.loc and o.T , respectively. For simplicity, we assume that
objects always lie along the edges (i.e., road segments) of
Gr . Suppose that an object o lies on (u, v) with a given cost
to each end vertex u and v. A new vertex can be created for
o, and (u, v) is then replaced with edges (u, o) and (o, v).

Thus, we can define the aggregate network distance
between an object o and a set of locations Q as follows:

distf (o,Q) = f∀qi∈Qdist(o, qi), (1)

where f is an aggregate function that applies to sets of num-
bers. In this paper, we simultaneously consider two types of
aggregate functions: distsum(o,Q)=

∑
∀qi∈Q dist(o, qi) and

distmax(o,Q)=max∀qi∈Q dist(o, qi).

2. Hereafter, when there is no ambiguity, “spatial-textual object” is
abbreviated to “object”.

TABLE 1
Summary of Notations

Notation Description
c, uq attendee size and query user for an activity
ω, ε set of keywords and a distance/time threshold
j number of assembly points to select among
Gs(J), Gs(Vs∗ ) subgraphs of Gs induced by J and Vs∗
Gks , G

k
s (uq , c) k-core of Gs and cohesive k-core(s) of uq in Gs

Gkmax
s (uq , c) Gks (uq , c) with maximum coreness

O set of spatial-textual objects
Ls(uq) published location of uq in the road network
Rs(vs, o) rating of object o given by user vs
Rs(U, o) average rating of o against a set of users U
Q query points, i.e., Ls(Gkmax

s (uq , c))

NGs (v), NGk
s
(v) sets of neighbors of v in Gs and Gks

dgGs (v) degree of vertex v in Gs
w(u, v) cost of the road segment between u and v
dist(u, v) network distance between u and v
distsum(o,Q) total cost from object o to Q
distmax(o,Q) maximum cost from o to any qi ∈ Q
θ(o, U) overall score of object o against a set of users U
Lc/Li largest increment in coreness/largest incidence
TS/TRS threshold selection/threshold ripple selection
TE/HE threshold expansion/holistic expansion

For example, Fig. 1 displays a road network Gr and
a textual description of each object. Edge (r7, r15) has a
distance weight of w(r7, r15)=4. Object o5 lies on this edge,
with w(r7, o5)=1.5 and w(r15, o5)=2.5. The path r11r7r15
is the shortest path from r11 to r15, with dist(r11, r15)=6.
Social network. We model a social network as an unweighted
and undirected graph Gs=(Vs, Es, Ls, Rs), where Vs is the
set of vertices (representing users), Es ⊆ Vs×Vs is the set
of edges (i.e., social relations), Ls and Rs are the sets of
mappings defined on Vs such that for each vertex vs in Vs,
Ls(vs) specifies the attributes of vs (e.g., name, gender, and
location), and Rs(vs, o

∗) records the rating given by vs to
the visited object o∗. In our case, Ls(vs) provides a mapping
of each user’s location in the road network. Given a vertex
vs, we denote the set of its neighbors, {us|(us, vs)∈Es}, by
NGs

(vs). The degree of vs, |NGs
(vs)|, is denoted by dgGs(vs).

Then, we can formally define induced subgraph as follows.
Definition 1 (Induced Subgraph). A graph Gs(Vs∗) =

(Vs∗ , Es∗ , Ls∗) is called the subgraph of Gs induced by
Vs∗ , where (1) Vs∗ ⊆ Vs, (2) edge (u, v) ∈ Es∗ , iff u, v ∈
Vs∗ , (u, v)∈Es, and (3) for each v∈Vs∗ , Ls∗(v)=Ls(v).

The k-core concept [4], which has been widely used to
describe cohesive subgraphs, is formally defined as follows.
Definition 2 (k-Core). Given a graph Gs, an induced subgraph

Gs(J) is the k-core ofGs, denoted byGks , iff the following two
conditions are true. (1) k-degree: dgGs(J)(v)≥ k for every
v ∈ J . (2) maximality: For any J ′ such that J ⊂ J ′ ⊆ Vs,
there exists a u∈J ′\J such that dgGs(J′)(u)<k.

Note that we have Gk+1
s ⊆ Gks [9]. A vertex v ∈ Gs

has coreness k if it belongs to Gks but not to Gk+1
s . For any

V ⊆ Vs, the largest coreness in a graph Gs(V ) is called the
coreness of Gs(V ), which is denoted by cn(Gs(V )).

2.2 Definition of the CGNN Problem
Now we can formally define the cohesive group nearest
neighbor queries (CGNN) over road-social networks.
Definition 3 (Cohesive k-Core). Given a constant c and a

query user uq∈J⊆Vs in the social network Gs, the cohesive



4

s2

s1

s3

s4

s5

s6
s7

s9 s10

s8

s11

s12

s13
s14 s15

s16

s17

s18

s19

s20

s21

s22

s23

s24

s25

s26

s27

Gs
2

Gs
3

Gs
4
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k-core, denoted byGks(uq, c), is a connected induced subgraph
Gs(J) such that Gs(J) is a k-core and |J | = c.

We may conclude that the user group J of Gks(uq, c) con-
sists of {uq, u1, . . . , uc−1}, whose coreness can be expressed
as cn(Gs(J)). Among all k-cores Gks(uq, c), any k-core with
the maximum coreness is referred to as the most cohesive k-
core, denoted by Gkmax

s (uq, c); i.e., ∀k′ > kmax, there exists
no Gk

′
s (uq, c). Note that kmax can be up to c−1.

Example 2. In Fig. 2, G2
s, G

3
s and G4

s are annotated in
different colors. Suppose that uq=s8 and c=5; then, the
subgraph induced by {s7, s8, s9, s10, s11} is a cohesive
2-core. Similarly, another six subgraphs can also be iden-
tified as G2

s(s8, 5). However, there exists one additional
subgraph induced by {s2, s3, s4, s6, s8} with a coreness
of 4 that is the most cohesive k-core, i.e., G4

s(s8, 5).

Definition 4 (Maximum Connected Component). The max-
imum connected component of graph Gs with regard to a
vertex uq and a constant c, denoted by Cmax(uq, c), is the
component that contains uq in the k-core with maximum
coreness among all k-cores of Gs such that |Cmax(uq, c)|≥c.

Road-social network. A road-social network is a pair of graphs
(Gr, Gs), where Gr is a road network and Gs is a social
network. Each vertex us ∈Gs is associated with a vertex vr
or a spatial point p of Gr , indicating that user us is currently
in location vr or p, i.e., Ls(us)=vr or p in our case.

For example, Fig. 1 shows a road-social network. The
mapping between s26 and r9 in the published user location
information indicates that s26 is currently at r9.
Problem statement (CGNN). Given graphs Gs and Gr, an
activity initiator issues a query q= 〈uq, c, ω, ε, j〉, where uq
is the query user in Gs, c is the attendee size, ω is a set of
keywords, ε is the network distance threshold and j is an
integer. A CGNN query retrieves c users and a correspond-
ing set Aq of j objects from set O with the smallest total
cost to all locations in set Q over the road-social network
such that (1) Q consists of locations in Gr associated with
the c users from Gkmax

s (uq, c), denoted by Ls(Gkmax
s (uq, c)),

i.e., {Ls(uq), Ls(u1), . . . , Ls(uc−1)}; (2) Aq⊆O∗⊆O in Gr ,
∀o∈O∗, w⊆o.T , and |Aq|=j; and (3) ∀o∈Aq,∀o′∈O∗\Aq ,
both distsum(o,Q)≤distsum(o′, Q) and distmax(o,Q)≤ε.

We regard the locations that comprise the most cohesive
k-core for a group of users as query points Q; e.g., CGNN
query q = 〈Steve, 4, “cafe”, 6.5, 2〉 maps to Q1. Note that
there may be more than one group of c users inGkmax

s (uq, c).
As illustrated in Section 3.2, the local-search-based solution
returns each group in Gkmax

s (uq, c) but the heuristics only
select the most promising one rapidly leading to a solution.

2.3 Definition of the MCGNN Problem
In this section, we formally define the cohesive group n-
earest neighbor queries under multi-criteria (MCGNN) over

road-social networks. As shown in Example 1, there usually
exist objects that are relatively far away from the query
points Q, i.e., Ls(Gkmax

s (uq, c)), but objectively rated higher.
In fact, more criteria can be considered as metrics as well.
Given such multidimensional metrics that need to be refer-
enced simultaneously, more objects which can substitute the
set Aq of j objects ultimately recommended to uq typically
have to be considered, compared to CGNN queries. In this
way, a meaningful combining scoring function is urgently
needed that supports generality and comparability.

Thus, we define the overall score θ∗(o, U) of an object o
against a set of users U under m criteria in the road-social
network (Gr, Gs) as follows:

θ∗(o, U) =
m∑
i=1

αi · di, di =
{
si(o, U) if beneficial;
1−si(o, U) otherwise;

(2)

where di is the i-th dimensional metric and si(o, U) is the
normalized score of the i-th dimensional criterion w.r.t. o
and U (e.g., U ’s rating of o), αi ∈ (0, 1) for each i ∈ [1,m]
is the weight of di used to balance the m criteria and that∑m
i=1 αi = 1. Generally, for criterion that is not expected

by or not beneficial to users, the smaller its si(o, U), the
better (e.g., U ’s total travel cost to o, corresponding to di=
1−si(o, U)); thus the greater the overall score, the better.
Problem statement (MCGNN). Given graphs (Gr, Gs), a M-
CGNN query q= 〈uq, c, w, ε, j〉 retrieves c users, but unlike
CGNN queries, the corresponding set Aq consists of j ob-
jects with the greatest overall scores over the road-social net-
work, where it retains the conditions (1) and (2) but replaces
the condition (3) in CGNN problem statement: ∀o∈Aq,∀o′∈
O∗\Aq , both θ∗(o,Gkmax

s (uq, c))≥ θ∗(o′, Gkmax
s (uq, c)) and

distmax(o,Q)≤ε.
For ease of presentation, we consider MCGNN queries

in two-dimensional metrics (m = 2) in the following, i.e.,
average rating and total travel cost, such that θ∗(o, U) =
α1 · ‖Rs(U, o)‖+(1−α1) · (1−‖distsum(o, Ls(U))‖), where
Rs(U, o) =

∑
∀ui∈U Rs(ui, o)/|U | represents the average

rating of o against U , and ‖ ·‖ indicates normalization. In
order to avoid normalizing distsum(o, Ls(U))3, which is a
requirement for using θ∗(o, U), we employ an equivalent
θ(o, U) instead of θ∗(o, U) as follows:

θ(o, U) =
Rs(U, o)

α · distsum(o, Ls(U))
. (3)

Here, α is a positive real number and defines the importance
of one measure over the other. For example, α>1 increases
the importance of the aggregate network distance over the
average rating. In particular, if ui has not been or rated o
before, Rs(ui, o) will be replaced by an average rating for
all users who have rated in Gs. Note, however, that our
approaches in Section 4 also support θ∗(o, U) and can easily
be applied to the cases of m > 2.

3 ALGORITHMS FOR CGNN QUERIES

This section presents our efficient approach for CGNN
queries. In Section 3.1, we briefly introduce the framework
of our solution. Section 3.2 shows how to find the most cohe-
sive k-core, and Section 3.3 presents efficient algorithms for

3. In the context of road networks, normalizing the network distance
requires computing the shortest path between any two points, which is
prohibitively costly to process in practice.
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Procedure CGNN_Framework{

    Input: (Gr, Gs), q = uq, c, w, ε, j

    Output: Gs      (uq, c) and Aq 

    (1) find the most cohesive k-core of uq with size c

    (2) prune objects with keywords w and network distance ε

    (3) verify top-j qualified objects from candidate set S

kmax

Fig. 3. Framework for a CGNN query.

filtering out objects based on network distance restrictions.
Section 3.4 describes new verification techniques for reduc-
ing the cardinality of the candidate objects and presents our
final CGNN algorithm that integrates these techniques.

3.1 Framework of Our Approach
For processing CGNN queries, we propose the filtering-
and-verification framework shown in Fig. 3. First, we locate
and select the most cohesive k-core Gkmax

s (uq, c) for uq .
Second, we filter out objects beyond a given network dis-
tance threshold ε from the locations in Gr (i.e., query points)
linked to each user in Gkmax

s (uq, c) and keep the remaining
objects. Then, we compute the next nearest neighbor (NN)
of each query point to obtain the candidate set S of objects
until j common objects are found for all query points. Final-
ly, we identify unpromising objects through inference and
return the top-j qualified objects. The framework consists
of a filtering (i.e., finding the most cohesive k-core in the
social network), pruning objects based on keywords and a
network distance ε on the road network, and verification
(i.e., verifying qualified objects in candidate set S).

Note that we initially employ the popular inverted in-
dexing technique to organize the objects. Thus, only objects
O∗ ⊆ O whose textual descriptions correspond to all user-
specified keywords ω are retained in the search, and all
others are pruned. Loading objects that do not match all
query keywords could result in performance degradation,
especially when ω is not small. In the rest of this paper, we
use O∗ to denote the objects meeting keywords ω.

3.2 Finding the Most Cohesive k-Core
To determine the most cohesive group relationships be-
tween uq and its correlative neighbors, which may also
be interconnected, we propose a local-search-based solution
called center expansion (CE). The intuition is that the most
cohesive group for a given vertex should be in the vicinity of
the vertex. Thus, the entire Gs is not necessarily involved in
the search. The local-search-based solution works as follows.

CE leverages the social-distance-based pruning (SD) as
described in Section 5.1 and the k-core decomposition [10],
and treats uq as a center in Cmax(uq, c) for outward diffu-
sion, i.e., a breadth search. In each round of CE, multiple
vertices are selected without duplication from among the
neighbors of the center, and an unmarked vertex is taken as
the new center. When the size of an expansion reaches c, the
subgraph and its coreness are recorded. Once all possible
expansions in the current connected component of Gks have
been completed, CE returns the induced subgraph(s) with
coreness k, if any, as Gkmax

s (uq, c); otherwise, it expands uq
in connected component of Gk−1s . CE exploits graph topolo-
gy to scale out from the center so that induced subgraph of
each completed expansion is connected and includes uq .

Although SD may reduce the search space and the time
to compute k-core is linear in the number of edges [9], i.e.,

Algorithm 1: HeuristicsFramework(uq, c)

Input: uq : query user; c : size constraint

Output: Gkmax
s (uq , c)

1 G′
s ← Social Distance based Pruning(uq , c);

2 Cmax(uq , c)← k-core of G′
s;

3 queue.enqueue(uq); subset H ← ∅;
4 while queue 6= ∅ do
5 v ← queue.dequeue(); H ← H ∪ {v};
6 if |H| = c then

7 return H as Gkmax
s (uq , c);

8 foreach (v, w) ∈ edges in Cmax(uq , c) do
9 if w is not visited then

10 queue.enqueue(w);

O(|Es|), the cost is high due to the numerous combinations.
The most cohesive k-core must exist in a subgraph of size s
containing c users, and we must verify at least Csc−1 permu-
tations; thus, the time complexity is O(sc). Since the sub-
graph’s coreness cannot be greater than that of Cmax(uq, c),
which is typically taken to be constant, we can think of s
as being closely related to the scale of |Vs|, especially when
Gs has a high density (e.g., a high average degree). Thus,
the lower bound on the complexity of any exact algorithm
isO(|Vs|c). As shown in Section 6, our exact algorithm takes
a relatively long time even on a graph with only thousands
of vertices. Thus, a time complexity of O(|Vs|c) is already
beyond reach, and the solution is intractable on big data.

Next, we propose two intelligent lightweight heuristics
of constant cost. The basic idea for refining candidate gener-
ation is to use a priority queue to select the most promising
vertex that will rapidly lead to a solution. Theorem 1 can be
used as a prerequisite to support our heuristics.
Theorem 1. For graphGs and query vertex uq , given an attendee

size c, there must exist Gkmax
s (uq, c)⊆Cmax(uq, c).

Intuitively, Gkmax
s (uq, c) is a subgraph of the connected

component of Gs containing uq , whose size is no less than c
and coreness is the greatest. Note all the skipped proofs of
theorems can be found in the supplemental material.
Largest increment in coreness (Lc). Selecting the vertex that
leads to the largest increment in the coreness measure is a s-
traightforward heuristic since the final goal for Gkmax

s (uq, c)
is to find a subset H satisfying that |H|= c and cn(Gs(H))
is as close as possible to or even equal to c−1. In this strategy,
the priority f(v) of a vertex v is defined as

f(v) = cn(Gs(H ∪ {v}))− cn(Gs(H)). (4)

This approach is a greedy one since only the improvement
in cn(H) in the next step is considered. Note that whenever
a vertex is added to H , the coreness of the current H is
incremented by at most 1. Hence, this strategy is equivalent
to random selection from the vertices adjacent to one of the
vertices with the minimal degree in H .

s20

s21

s22
s17

(H3)

s20

s21

s22

s18

(H4)(H2)

s21 s27

s26s22

s21

s22

s27

s20

(H1)

Fig. 4. Local search from s21 with c = 4.

Largest incidence (Li). This selection approach is more intelli-
gent. The priority of a vertex v is defined as

f(v) = dgGs(H∪{v})(v). (5)
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In this strategy, we select the vertex with the largest number
of connections to the current H . This technique yields the
fastest increase in the mean degree of Gs(H). In general,
the lowest degree of a graph increases as its density grows;
consequently, a valid solution H with cn(Gs(H)) is expect-
ed to be found within finite steps if such a solution exists.
Example 3. Suppose that s21 wishes to find the most cohe-

sive group of 3 invitees in Fig. 2 (uq = s21, c = 4). CE
returns G2

s(s21, 4), consisting of 4 different user groups,
as shown in Fig. 4. On the other hand, if we always
choose the vertex with the largest number of connections
to H , i.e., use the Lc or Li selection strategy, only Gs(H1)
or Gs(H2) is found. Because uq has 4 neighbors, one
of which is selected after uq , e.g., s20, only s27 and s22
can be successively selected, yielding Gs(H1), due to the
vertex priorities defined in Equations 4 and 5.

Complexity analysis. Let n′ and m′ denote the numbers of
vertices and edges, respectively, in Gs(H). Generally, Lc and
Li can be implemented in O(n′+m′logn′) time. When a
new vertex v is added to the queue, at most dgCmax(uq,c)(v)
queue update operations must be executed, that is, at most
m′ update operations in total. Each queue operation (insert,
delete, priority update) generally has a time complexity of
O(logn′). Through careful design, Li can be implemented in
O(n′+m′) time with an expansion cost ofO(1). We maintain
a set of lists, each containing vertices with the same f(v).
Each time v is added to H , the f(·) value of v’s neighbors
(except those already in H) increases by 1. We move each
influenced neighbor from its original f(·) list to the list for
f(·)+1. In this way, we can always find one vertex with the
maximal f(·) in O(1) time.

If there is a tie in the maximal f(·) values for both strate-
gies, we select the vertex with the minimal social distance to
uq based on the SD process described in Section 5.1; if there
is still a tie, a vertex is selected arbitrarily.

3.3 Range Filter
To support general road networks with various cost models
(e.g., distance or travel time), we adapt the incremental
network expansion (INE) algorithm of [3] to incrementally
access objects since INE does not rely on specific restric-
tions (e.g., Euclidean distances [3]) or precomputed road
networks (e.g., shortcuts [11] or Voronoi diagrams [12]). In
[3], network distance is calculated from scratch for each ob-
ject; to alleviate computational cost, we integrate Dijkstra’s
algorithm [13] into INE such that the network distances to
objects are calculated cumulatively from each query point
qi∈Q, i.e., Ls(Gkmax

s (uq, c)), during network expansion.
For simplicity of presentation, in Algorithm 2, we as-

sume that each query point qi starts from a vertex4 u in Line
3. For qi ∈Q, a min-priority queue Mi ∈M is used to store
the vertices accessed during expansion, where dist(n)=∞
if vertex n has not been visited. Here, dist(n) = dist(qi, n)
if a vertex n is marked (Line 7). Similarly, we use dist(o) to
compute dist(qi, o), and dist(o) = dist(qi, o) if an object o
can be visited from both end vertices of its edge (Line 15).
In Algorithm 2, vertices are accessed in nondecreasing order
of their network distances from qi. Line 6 updates distT ,

4. If qi is on an edge, we can use the two end vertices of the edge to
find nearby objects and merge the answer sets.

Algorithm 2: RangeFilter(Q, ǫ)

Input: Q : query points; ǫ : network distance threshold
Output: R : objects with network distance restriction

1 R :=∅; M :=∅; distT :=0;
2 foreach query point qi ∈ Q do
3 u← the vertex where qi is; Mi.enqueue(〈u, 0〉);
4 while Mi 6= ∅ do
5 〈n, dist〉 ←Mi.dequeue();
6 distT := dist; terminate while if distT > ǫ;
7 Mark the vertex n;
8 foreach unmarked vertex ni ∈ Adj[n] do
9 Update dist(ni) if dist(ni) > dist+ w(n, ni);

10 foreach object o ∈ O∗ on (n, ni) do
11 dist(o) :=dist+w(n, o); 〈o, dist(o)〉 → Ri;

12 Mi.enqueue(〈ni, dist(ni)〉);
13 foreach marked ni ∈ Adj[n] do
14 foreach t ∈ Ri and t.o on (ni, n) do
15 t.dist := min{t.dist, dist+ w(n, o)};

16 Ri :=Ri\t if ∃t ∈ Ri with t.dist>ǫ; ∪|Q|
i=1Ri → R;

which is the lower bound on the network distance for any
unmarked vertex. The expansion terminates when distT >ε,
which implies that dist(q, nx)>ε for any unmarked vertex
nx. For each vertex ni in the list of vertices adjacent to n,
Line 9 updates dist(ni) if ni is not marked, and the objects
on edge (n, ni), that satisfy the keyword constraint are
loaded if ni is visited for the first time (Line 10), followed by
a network distance computation based on dist(n) (Line 11).
If vertex ni is already marked, Lines 13-15 may update the
network distances of the objects since both end vertices (n
and ni) of the edge are marked. Finally, objects with network
distances longer than ε are pruned from Ri ∈R. Note that
Algorithm 2 can be adapted for directed road networks due
to our integration of the INE and Dijkstra algorithm.
Example 4. In Fig. 1, suppose that q1 is at r6, with ε= 4.5

and ω = {“cafe”}. After r6 is marked, its neighbors
r15 and r4 with updated network distances are placed
in M1 = {〈r15, 1〉, 〈r4, 2.8〉} since no object is found on
either edge (r6, r15) or (r6, r4). Next, 〈o5, 3.5〉, 〈o4, 5.2〉
on (r15, r7) and (r15, r13), derived from the first element
in M1, are discovered and placed in R1. Then, M1 =
{〈r4, 2.8〉, 〈r16, 4〉, 〈r7, 5〉, 〈r13, 6.7〉} is updated. Now, r4
reaches r3 and r5 with 〈o8, 3.8〉, and r16 reaches r14 with
〈o1, 7.5〉. Since the distance to the next entry 〈r3, 4.8〉 in
M1 is larger than ε, finally,R1={〈o5, 3.5〉, 〈o8, 3.8〉}with
〈o4, 5.2〉 and 〈o1, 7.5〉 discarded.

Complexity analysis. Let v′ and e′ denote the numbers of ver-
tices and edges, respectively, accessed during road network
expansion; then, Algorithm 2 can be implemented with a
time complexity of O(c(v′log(v′)+e′)).

3.4 Verification
This section presents our verification techniques for CGNN
queries on road-social networks. Henceforth, the next NN
of a query point qi refers to the object last obtained from
Ri as described in Section 3.3. The process of continuously
obtaining the next NN for a query point is regarded as
the expansion of that query point, and the expansion order
determines the next query point to be expanded.

3.4.1 Obtaining the Candidate Set
The goal of this process is to obtain a set S of CGNN can-
didates that includes the final results. We assume that there
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Algorithm 3: ObtainCandidates(Q,R)

Input: Q : query points; R : objects of network distances
Output: S : candidate set; CO : common objects; dstj : total

network distances of oj to Q
1 H :=∅; S :=∅; dstj :=∞; CO :=∅;
2 foreach qi ∈ Q do
3 Get o1qi ∈Ri; Ei = {o1qi}; H.push(〈qi, dist(qi, o1qi )〉);
4 while | ∩ci=1 Ei| < j do
5 e←Min(H); qcur :=e.q; get qcur’s next NN o′∈Rcur;
6 Ecur :=Ecur∪{o′}; H.push(〈qcur, dist(qcur, o′)〉);
7 foreach o ∈ ∩ci=1Ei do
8 CO :=CO ∪ 〈o, distsum(o,Q)〉;
9 return S :=∪ci=1Ei; dstj :=distsum(oj , Q); CO;

are c query points with respect to Q, and the acquisition of
S consists of the following steps.

We obtain the first NN, denoted by o1qi , from Ri for each
qi ∈ Q, and place each into its own expansion list Ei. We
then check whether there are j intersections among E1 to
Ec. If not, we continue to expand the search space for the
query point qi in sequence.

Note that before retrieving the NNs for each qi, we can
simply arrange all corresponding objects in the result set Ri
generated by Algorithm 2 in ascending order of the network
distance. After okqi is retrieved, we place it at the end of the
expansion list Ei, which is actually an ordered list of qi’s
NNs, i.e., Ei = {o1qi , o

2
qi , . . . , o

k
qi}. This phase stops when

there are j intersections among E1 to Ec, i.e., | ∩ci=1 Ei|=j,
which means that we have identified a set CO of the first j
common objects included in the expansions of all qi. Here,
CO is the set of current best CGNN candidates; then, we can
compute the total network distance distsum(oj , Q) between
the j-th common object oj and Q, denoted by dstj .
Theorem 2. Once the j-th common object oj in the expansions of

all qi is identified, i.e., ∩ci=1Ei = {o1, o2, . . . , oj}, the top-j
CGNNs are contained in S = ∪ci=1Ei.

Algorithm 3 details the acquisition of the candidate set
(Lines 1-9). For each query point qi, the algorithm finds
the first NN and adds it to the expansion list Ei for that
query point. In addition, each query point is inserted into
a min-heap (H) with weight dist(qi, o1qi) (Lines 2-3). Then,
we obtain the next NN (e.g., o′) of the top element in H
and insert it into the corresponding expanded set Ecur of
the current query point qcur . We also update the weight of
qcur in H to dist(qcur, o

′). These procedures are repeated
until there are j common objects in the expansion lists for
all query points (Lines 4-6). Once the set CO of common
objects has been constructed, the total network distance dstj
between oj and Q is returned (Line 9).
Example 5. Consider a query q = 〈Steve, 3, “cafe”, 10, 2〉.

Fig. 5 shows an outline of network distances between Q
(at r7, r15, r11) and eligible objects. We now obtain the
first NN for each qi ∈Q, i.e., E1= {o5}, E2= {o5}, E3=
{o6}, and H = {〈q1, 1.5〉, 〈q2, 2.5〉, 〈q3, 2.5〉}. The expan-
sion of Q continues until 2 common objects are found.
At this point, E1 = {o5, o6, o8, o4}, E2 = {o5, o4}, E3 =
{o6, o5, o4}, and H={〈q2, 4.2〉, 〈q1, 4.5〉, 〈q3, 5.5〉}. Thus,
S={o4, o5, o6, o8}, and CO={〈o5, 7.5〉, 〈o4, 14.2〉}.

3.4.2 Verification
Our objective is to retain qualified objects that will be among
the top-j CGNNs from the candidate set S. That is, if

q1

o6
o5

o4

o8

o1
q3

q2

Fig. 5. Outline of network distances.

there are only j objects in S, then they are the CGNNs we
seek. We now present our verification techniques in detail.
Before verifying objects from S, we select a query point qi
according to a certain expansion order of Q to retrieve the
next NN and then compute dst=

∑c
i=1 dist(qi, oi), where

oi =

{
o′ if o′ ∈ Ei;
o1qi otherwise.

(6)

If dst>dstj , we calculate the set E′i for each qi.

E′i=

{
{o|o∈Ei, dist(qi, o)<dist(qi, o′)} if o′∈Ei;
∅ otherwise.

(7)

Then, let S′ = ∪ci=1E
′
i. For all o /∈ S ∩ S′, object o can be

discarded from S, as stated in Theorem 3.

Theorem 3. Let o′ be the next NN and dst=
∑c
i=1 dist(qi, oi).

If dst>dstj and ∀o /∈S ∩ S′, it is verifiable that object o is
not among the CGNNs and can be discarded from S.

If dst ≤ dstj , we need only to place qi’s next NN o′

into its expanded set Ei and then determine whether o′ is
included in the expansions of all query points. If so, we
replace 〈oj , dstj〉with 〈o′, dst〉 in the set of common objects,
i.e., CO, where we update dstj with the newly elected oj af-
ter sorting; otherwise, we save an entry consisting of o′, the
corresponding dst, and every currentEi in the unpruned set
UP . Note that this action enables us to continue verifying
the qualified o remaining in S with both the expanding and
backtracking strategies based on up-to-date dstj and not-
yet-validated entries in UP . We proceed in this way until
there are only j objects in S, which are the top-j CGNNs.

Algorithm 4: Verification(H,S,CO,R)

Input: H :min-heap; S : candidate set; CO : common objects;
R : objects of network distances

Output: CGNNs
1 while |S| > j do
2 e←Min(H); qcur :=e.q; get qcur’s next NN o′∈Rcur;

3 dst = Σc
i=1∧o′∈Ei

dist(o′, qi) + Σc
i=1∧o′ /∈Ei

dist(o1qi , qi);

4 if dst>dstj then S :=S∩(∪ci=1E
′
i); {o′}→Ecur;

5 else
6 {o′}→Ecur;
7 if o′ ∈ ∩ci=1Ei then
8 Update S and CO; 〈oj , dstj〉 ← Sort(CO);
9 if ∃t ∈ UP and t.dist > dstj then

10 E′
i← t.Ei;S :=S ∩ (∪ci=1E

′
i);UP \{t};

11 else UP .push(〈o′, dst, E1, E2, . . . , Ec〉);
12 H.push(〈qcur, dist(o′, qcur)〉);
13 return CGNNs :=S;

In Algorithm 4, Line 2 first extracts the head of min-heap
H and obtains its next NN in every round. Then, we apply
our verification strategies to speed up the CGNN query
processing. The value of dst is the lower bound on the total
network distance from o′ to all query points (Line 3). Line
4 verifies the objects that cannot be CGNNs by taking the
intersection of S with the union of theE′i. If dst≤dstj and o′
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is a common object, then Line 8 updates the current set CO
and dstj . Line 12 updates the weight of qcur in H . In Lines
9-10, we use backtracking verification method to accelerate
the convergence of qualified objects retained from S.
Example 6. Continuing Example 5, we obtain q2’s next

NN o8 from R2, and dst = dist(q1, o8)+dist(q2, o8)+
dist(q3, o6)=11.3. Since dst<dst2, we insert o8 into E2

(i.e., {o5, o4, o8}), push 〈o8, 11.3〉 with each current Ei
into UP , and update H = {〈q1, 4.5〉, 〈q3, 5.5〉, 〈q2, 4.8〉}.
Next, we obtain q1’s next NN o1 from R1 and dst =
dist(q1, o1) + dist(q2, o5) + dist(q3, o6) = 11. Now, we
have E1 = {o5, o6, o8, o4, o1}, push 〈o1, 11, E1, E2, E3〉
into UP , and update H = {〈q2, 4.8〉, 〈q3, 5.5〉, 〈q1, 6〉}.
Then, we obtain q2’s next NN o6 and dst=dist(q1, o6)+
dist(q2, o6)+dist(q3, o6) = 10.5. Because dst < dst2 and
o6 ∈ ∩3i=1Ei, we discard o4 from S (i.e., {o5, o6, o8})
and update CO = {〈o5, 7.5〉, 〈o6, 10.5〉}; we now have
dst2=10.5. Since there is an entry in UP with dst>dst2,
e.g., 〈o8, 11.3, E1, E2, E3〉, we can obtain E′1, E′2 and E′3
in accordance with the corresponding object and Ei of
that entry: E′1= {o5, o6}, E′2= {o5, o4}, and E′3= ∅ such
that S′ = {o4, o5, o6} and S ∩S′ = {o5, o6}. Thus, the
verified objects o5 and o6 are the top-2 CGNNs.

Correctness and complexity. By Theorem 2, the set Aq of top-j
CGNN objects surely belongs to S. Thus, only objects that
cannot be in Aq are pruned by Theorem 3, and we will ob-
tain the accurate top-j objects in response to a CGNN query
because the entire verification process of Algorithms 3 and 4
corresponds to the expansion of the set Ri of objects within
ε for each query point, requiring at most |R| operations.

4 ALGORITHMS FOR MCGNN QUERIES

Compared to CGNN queries, although MCGNN queries
appear to only additionally takes into account the ratings
of POIs. However, as illustrated in Example 1, the filtering-
and-verification framework proposed for CGNN queries
cannot completely solve MCGNN queries. Therefore, this
section presents a brand new set of solutions to replace the
verification techniques in Section 3.4, even the incremental
and accumulative expansion strategy in Section 3.3.

Given c attendees fromGkmax
s (uq, c) and the correspond-

ing query points Q, a baseline method to complete the
evaluation of a MCGNN query, retrieving the top-j ranked
objects in descending order of their overall scores, is to
sort distsum(o,Q) (in ascending order) and average rating
Rs(G

kmax
s (uq, c), o) (in descending order) of each object

o from R in Section 3.3 into lists to find those with the
k greatest overall scores. In this section, we propose two
methods that find top-j objects more efficiently according
to lists, and another two algorithms that solve MCGNN
queries by effectively minimizing network traversal.

4.1 Threshold Selection Strategies
The baseline method of MCGNN above needs to traverse all
the sorted lists and rerank the overall score results for each
object to report the desired top-j objects with greatest over-
all scores. However, using these individual orderings, we
can perform much better in evaluating MCGNN queries by
eliminating ergodic matching and combined score ranking.
Thus, two more efficient methods are proposed.

Threshold selection (TS). The main difference between TS and
the baseline method of MCGNN is the stopping mechanism
which decides when to stop doing sorted access to the lists.
In sorted access, objects are accessed sequentially ordered by
the scoring predicate, while for random access, objects are
directly accessed by their identifiers. Random access allows
for obtaining the overall score of an object right after it
appears in one of lists. The stopping mechanism of TS uses
a threshold which is computed using the last local scores
seen under sorted access in the lists. TS works as follows:

1) Do sorted access in parallel to each of the m sorted
lists. As an object o is seen under sorted access in
one list, do random access to the other lists to find
the local score of o and compute its overall score.
Maintain in a set Aq the j seen objects whose overall
scores are the greatest among all objects seen so far.

2) For each list Li, let si be the last local score seen
under sorted access in list Li. Define the threshold
to be δ= t(s1, s2, . . . , sm)5. If Aq involves j objects
with overall scores greater than or equal to δ, then
halt and return Aq . Otherwise, go to 1.

Theorem 4. Using a monotone combining scoring function, TS
correctly finds the top-j answers.

Proof. We need only show that every member of Aq has an
overall score at least as great as every object z not in Aq .
By definition of Aq , this is the case for each object z that
has been seen in running TS. So assume that z was not
seen and its local scores are z1, z2, . . . , zm. Therefore, the
position of zi is greater than or equal to that of si for
every i. Hence, t(z1, z2, . . . , zm) ≤ t(s1, s2, . . . , sm) = δ,
where the inequality follows by monotonicity of t. How-
ever, for each o in Aq we have overall score of o greater
than or equal to δ. Thus, TS is correct. �

To solve MCGNN queries, let s1 (resp. s2) be the last lo-
cal score seen under sorted access in list L1 of distsum(o,Q)
(resp. L2 of average rating), and threshold δ be s2/(α · s1).

o1

o2

o5

o3

o

5.0

6.0

6.5

7.0

distsum

o3

o1

o4

o2

o

5.0

4.8

4.8

4.5

Rs¯¯ 

Fig. 6. List L1 of distsum and List L2 of average rating.

Example 7. Given a set U of c attendees, consider two lists
L1 and L2 holding different rankings for the same set R
of objects based on two scoring predicates distsum and
Rs, respectively. Fig. 6 depicts a partial lists where Rs
produces score values in the range [0, 5.0]. Suppose we
use the overall scoring function θ(o, U) in Equation 3
to find a top-1 object o, where α = 1. TS first looks at
the objects at position 1 in both lists and looks up their
local scores in another list by random access to compute
overall scores, i.e., θ(o1, U) = 4.8/5, θ(o3, U) = 5/7. But
neither of them is as great as the threshold δ=5/5. Thus,
TS does not halt at position 1 with Aq={o1}. At position

5. A combining scoring function t is monotonic if t(x1, x2, . . . , xm)≥
t(x′1, x

′
2, . . . , x

′
m) whenever the position of xi is less than or equal to

that of x′i for every i.
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2, Aq still involves {o1} but now δ = 4.8/6 is less than
θ(o1, U). So TS halts at position 2 and return Aq={o1}.

Threshold ripple selection (TRS). As random access could incur
a large overhead (i.e., each sorted access in TS results in up
tom−1 random accesses), TRS modifies threshold δ to better
suit the new access strategy (i.e., with sorted access only) as
opposed to TS, which works as follows:

1) For each list Li, do xi sorted accesses in parallel to
each of the m sorted lists. As an object o is seen in
every Li, compute its overall score. Maintain in a
set Aq the j seen objects whose overall scores are
the greatest among all objects seen so far.

2) Let sni
i be the last local score seen from Li, where

ni is the number of objects retrieved from that list,
s1i is the first local score in Li. Define threshold
to be δ =max{t(sn1

1 , s12, . . . , s
1
m), t(s11, s

n2
2 , . . . , s1m),

. . . , t(s11, s
1
2, . . . , s

nm
m )}. If Aq involves j objects with

overall scores greater than or equal to δ, then halt
and return Aq . Otherwise, go to 1.

Theorem 5. Using a monotone combining scoring function, TRS
correctly finds the top-j answers.

Proof. We need only show that every member of Aq has
an overall score at least as great as every object z not in
Aq . So assume that z was not seen in every Li when TRS
halts and the local score of z are z1, z2, . . . , zm. Therefore,
there exists at least one position of zi greater than or
equal to that of sni

i , e.g., i=m. Hence, t(z1, z2, . . . , zm)≤
t(z1, z2, . . . , s

nm
m ) ≤ t(s11, s

1
2, . . . , s

nm
m ) ≤ δ, where the

inequality follows by monotonicity of t. However, for
each o in Aq we have overall score of o greater than or
equal to δ. Thus, TRS is correct. �

To solve MCGNN queries, let sn1
1 (resp. sn2

2 ) be the last
local score seen in list L1 of distsum(o,Q) (resp. L2 of
average rating), and threshold δ be max{s12/(α·s

n1
1 ), sn2

2 /(α·
s11)}. Obviously, ni is a multiple of xi, and TRS performs
best when x1=x2, which is explained in the experiments.
Example 8. Compared to TS in Example 7, suppose we access

two objects from each list by TRS, i.e., x1 = x2 = 2. At
the first stage, only object o1 is seen in every list with
overall score θ(o1, U)=4.8/5, while the threshold δ, i.e.,
max{5/6, 4.8/5}, is equal to θ(o1, U). So TRS halts here
and returns Aq={o1}.

4.2 Threshold Expansion
The threshold expansion (TE) is based on the observation
that the network traversal from each qi∈Q visits the vertices
in increasing order of their network distances from qi. Thus,
MCGNN queries can be answered by concurrently and in-
crementally expanding the network around each qi∈Q and
applying some top-j aggregate query processing techniques
[5], [6], [7] to guide and terminate the search early.

Algorithm 5 shows the pseudo-code of TE. Given a set
U of c attendees and corresponding Ls(U), TE computes
θ(o, U) first for all objects on the edge (nl, nr) containing
qi ∈Ls(U), where nl and nr are added to a priority queue
H storing tuples, e.g., 〈nl, dist(qi, nl), qi〉. H keeps vertices
nl visited by qi ordered on dist(qi, nl). Thus, its top element
corresponds to the next nearest vertex from any qi. TE
iteratively pops vertices from H , computes θ(o, U) on the

Algorithm 5: TE(U,Rs, ǫ)

Input: U : c attendees; Rs : rating records; ǫ : network
distance threshold

Output: MCGNNs
1 H :=∅; θj :=0;
2 foreach qi ∈ Ls(U) on (nl, nr) do
3 Compute θ(o, U) if ∀o on (nl, nr), distmax(o, Ls(U))≤ǫ;
4 Update top-j results and θj if necessary;
5 H.enqueue(〈nl, dist(nl, qi), qi〉, 〈nr, dist(nr, qi), qi〉);
6 while H 6= ∅ do
7 〈n, dist, q〉←H.dequeue();

8 if R̂s
α·dist ≤δ then terminate;

9 if n is not visited by q before then
10 foreach ni ∈ Adj[n] do
11 if (n, ni) is populated and not checked then
12 Compute θ(o, U) if ∀o on (n, ni),

distmax(o, Ls(U))≤ǫ;
13 Update top-j results and θj if necessary;

14 H.enqueue(〈ni, dst, q〉) if dst=dist+w(n, ni)≤ǫ;

adjacent edges, and adds the adjacent vertices that have
not been visited from the same qi before to H . During the
process, j-MCGNNs retrieved so far are maintained.

Let θj be the j-th greatest overall score of objects found.
TE terminates when R̂s

α·dist is no greater than a threshold δ,
i.e., θj ·c, where R̂s denotes the upper limit of Rs range and
dist is the network distance to the next vertex popped from
H . If this condition is met, no unexamined edge can contain
better solutions as guaranteed by the following theorem:
Theorem 6. Given a set U of c attendees, let (nl, nr) be an

edge that does not contain any query point qi. If ∀qi ∈ Q,
R̂s

α·dist≤δ, then for any object o on (nl, nr), θ(o, U)≤δ/c.

Proof. Since no qi lies on (nl, nr), the shortest path from
each qi to any o on the edge should pass either nl or nr .
Thus, ∀qi, dist(qi, o) ≥ min{dist(qi, nl), dist(qi, nr)} =
dist, distsum(o,Q)≥ c ·dist. Moreover, R̂s is always no
less than Rs(U, o), as a result, θ(o, U)≤ R̂s

α·c·dist≤δ/c. �

Example 9. In Fig. 1, given ε = 4.5 and ω = {“cafe”},
suppose that q1 is on (r7, r13) with w(q1, r13) = 1 and
q2 is on (r7, r15) with w(q2, r15)=1.5. Assume we want
to find the 1-MCGNN by TE with the overall scoring
function in Equation 3 (e.g., α = 1). Since (r7, r15)
is populated, TE applies shortest path queries to find
dist(q1, r7) and dist(q1, r15), and the overall score of o5
can be computed that becomes the current 1-MCGNN
with θ(o5, U)= 3.7

4.5 =0.82 (δ=1.64). Now H is initialized
as {〈r13, 1, q1〉, 〈r15, 1.5, q2〉, 〈r7, 2, q1〉, 〈r7, 2.5, q2〉}. En-
tries are popped in order, rejecting o4 as θ(o4, U)<0.82,
until 〈r11, 4, q1〉 is dequeued, TE terminates ( R̂s

4 ≤δ).

4.3 Holistic Expansion
Unlike TE, where shortest path queries of all component
network distances are performed to compute overall scores
of objects once a populated edge is visited, the holistic
expansion (HE) waits until the edge has been seen from
all qi. Therefore, HE avoids shortest path computations,
that could incur a large overhead (e.g., random I/Os) since
traversal of network vertices is carried out in a relatively
unsystematic manner.

HE maintains a set P of populated edges that have
been visited from some qi and may contain objects with
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Algorithm 6: HE(U,Rs, ǫ)

Input: U : c attendees; Rs : rating records; ǫ : network
distance threshold

Output: MCGNNs
1 H :=∅; θj :=0; P :=∅;
2 foreach qi ∈ Ls(U) on (nl, nr) do
3 if (nl, nr) is populated then add (nl, nr) to P ;
4 H.enqueue(〈nl, dist(nl, qi), qi〉, 〈nr, dist(nr, qi), qi〉);
5 while H 6= ∅ do
6 〈n, dist, q〉←H.dequeue();

7 if (P =∅ ∧ R̂s
α·dist ≤δ) then terminate;

8 if n is not visited by q before then
9 foreach ni ∈ Adj[n] do

10 if ni is not visited by q before then
11 H.enqueue(〈ni, dst, q〉) if

dst=dist+w(n, ni)≤ǫ;

12 if ∀qi,(n∨ni is visited by qi)∨(qi on (n, ni)) then
13 Compute θ(o, U) if ∀o on (n, ni),

distmax(o, Ls(U))≤ǫ;
14 Update top-j results and θj if necessary;

15 if (n, ni) is populated then
16 if ub(n, ni)≥θj then add (n, ni) to P ;
17 if (n,ni)∈P∧((ub(n, ni)<θj)∨(ub(n, ni)≥θj

is checked c times)) then
18 delete (n, ni) from P

overall score no smaller than θj . Algorithm 6 shows the
pseudo-code of HE, where Line 12 checks whether n or
nl has been visited from all qi, so that the lower bound
of overall score6 for each object on (n, nl) can be derived.
Thus, HE can terminate if (1) P = ∅ and (2) R̂s

α·dist is no
greater than the threshold δ (i.e., θj ·c). The former ensures
we have visited and eliminated all edges that may contain a
better solution in view of the component network distances
available. When an adjacent edge (n, ni) is visited from the
currently popped vertex n, we add it to P if it is populated
and ub(n, ni), the upper bound of any possible object on
it (see Section 4.3.1), is no smaller than θj . To compute
ub(n, ni), for each qi, if n (resp. ni) has been visited by qi,
we use the actual dist(qi, n) (resp. dist(qi, ni)); otherwise
we use a lower bound which is equal to the last network
distance popped from H (i.e., dist). If (n, ni) is already in
P , but now ub(n, ni)<θj or ub(n, ni)≥ θj which has been
checked c times, we remove it from P ; no object on (n, ni)
can be the top-j. Therefore, P initially grows as θj = 0
and shrinks later as θj becomes tighter. As for the latter,
due to Theorem 6, there exists no better object than current
solution. When the two conditions are met, HE terminates
with the correct top-j answers.
Example 10. Compared to TE in Example 9, (r7, r15) and

(r13, r15) are added to P as θ1=0. When 〈r15, 1.5, q2〉 is
dequeued, we can compute θ(o4, U)≥0.61 (i.e., θ1) since
r13 (resp. r15) is visited by q1 (resp. q2). Next, 〈r7, 2, q1〉
is popped, the actual 1-MCGNN o5 with θ(o5, U)=0.82
is found. Finally, HE terminates when P becomes empty.

Objects on an edge are checked at most c times and a
vertex can be enqueued at most c times.

4.3.1 Upper Bound for Edges
Given a set U of c attendees and an edge (nl, nr) with the
component network distances from each qi ∈ Ls(U) to nl

6. Note that the aggregate network distance can be improved since
the edge can be later visited again via another path.

and nr , we can compute the maximum possible θ(o, U)
for any object o on (nl, nr). It is practical while solving
MCGNN queries such that we can prune the populated
edge without computing o’s actual overall score if it cannot
contain any better solution. Thus, we study the possible
range of θ(o, U). As Rs(U, o) may range from 0 to R̂s,
now we discuss how the variation of dist(qi, o) affects
distsum(o, Ls(U)) depending on (1) whether qi lies on
(nl, nr) and (2) the network distances from qi to nl and
nr . There are three kinds of network distance distributions
for dist(qi, o), which appear as piecewise linear functions
as o moves from one end vertex to the other (e.g., nl to
nr). When qi lies on (nl, nr), dist(qi, o) decreases first and
then increases linearly; otherwise, it is divided into two
cases: (1) |dist(qi, nl)− dist(qi, nr)| = w(nl, nr), and (2)
|dist(qi, nl)−dist(qi, nr)|<w(nl, nr). The former indicates
that the shortest path from qi to one end vertex passes
through the other, and dist(qi, o) increases or decreases
linearly and monotonically. The latter reveals that dist(qi, o)
increases first and then decreases linearly.

In this way, we can find a sequence of splitting points
on (nl, nr) consisting of the end vertices and the extreme
points of dist(qi, o) for each qi ∈Ls(U). Thus, the position
on (nl, nr) can be determined by using splitting points such
that distsum(o, Ls(U)) is minimum for any o on the edge. In
other words, the lower bound of distsum(o, Ls(U)) can be
found by computing only the aggregate network distances
at the splitting points. It is noting that the corresponding
aggregate network distances between two adjacent splitting
points can be kept constant, increasing or decreasing linear-
ly. As a result, we can define the upper bound of θ(o, U) for
any object o on (nl, nr) using R̂s and the lower bound of
distsum(o, Ls(U)).

5 OPTIMIZATION METHODS

In this section, we present three optimization methods to
improve both CGNN and MCGNN query processing per-
formance. Section 5.1 presents an efficient algorithm for
reducing the search space before finding the most cohesive
k-core. Section 5.2 develops a road network index, based
on which we can progressively find the closest object candi-
dates from each query point. Section 5.3 introduces a round-
robin technique for increasing the overall query efficiency.

5.1 Social-distance-based Pruning (SD)
The pruning effect with k-core decomposition [10] alone is
not significant. If we can identify vertices that must not
appear in the results, it may greatly reduce the search space
and computational complexity. We assume that the coreness
of the most cohesive k-core must be no less than 2; oth-
erwise, retrieving only G1

s(uq, c) becomes less meaningful.
From this perspective, we regard the shortest social distance
as the minimum number of edges between two vertices.
Theorem 7. Given a social network Gs, v ∈ Vs must not be

contained in Gkmax
s (uq, c) if the shortest social distance from

v to uq is no less than c−1.

Based on Theorem 7, a social distance pruning strategy is
proposed to refine the cardinality of the potential candidate
set by eliminating more distant vertices before finding the
most cohesive k-core. Given a query user uq and a constant
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c, we construct a breadth-first search (BFS) tree rooted at
uq ; then, vertices at a tree height of at least c− 1 can be
pruned directly (the tree height is 0 at the root). When
this pruning strategy is used to delete vertices, the degree
of the remaining vertices in the underlying social network
changes, and more vertices can then be pruned through k-
core decomposition [10].
Example 11. Suppose that we wish to find Gkmax

s (s18, 4), a
BFS tree rooted at s18, as shown in Fig. 7(a). Vertices with
a tree height of no less than 3, i.e., s11, s13, s14, s15, and
s24, can be pruned by Theorem 7. Furthermore, s12 can
be pruned via k-core decomposition since its degree falls
from 5 (in Fig. 2) to 1. Finally,G3

s andG2
s, both containing

s18, are obtained as shown in Fig. 7(b).

5.2 Road-network-based Indexing
To compute network distance more efficiently, a road net-
work index IRN is adopted. We first construct a new road
networkG′r = (V ′r , E

′
r) fromGr as follows. Let V ′r = Vr∪O.

We add all edges in Er containing no object in O to E′r with
the same weight. The other edges in Er are subdivided into
multiple sub-edges depending on the number of objects; the
weights of resulting sub-edges are proportional.
Index structure. We adopt a state-of-the-art hierarchical tree
structure [8] to index G′r . A balanced search tree IRN
satisfies the following properties. (1) Each node of IRN rep-
resents a subgraph (root corresponds to G′r). The subgraph
represented by a parent node is a supergraph of those rep-
resented by its child nodes. All subgraphs at the same level
of IRN compose a partition of G′r, i.e., any two subgraphs
are disjoint and their union is G′r . (2) Each nonleaf node has
f(≥ 2) children. (3) Each leaf node contains at most τ(≥ 1)
vertices. All leaf nodes appear at the same level. (4) Each
node has a border set (i.e., boundary vertices of a partition)
and a distance matrix. In the distance matrix, for a non-leaf
node (resp. leaf node), the columns/rows are all borders of
its children (resp. columns are all vertices for this node),
and the value of each entry is the corresponding network
distance. (5) The occurrence list (i.e., L(n)) for a leaf node is
the list of objects in this node; for a nonleaf node, it is the
list of its children that contain objects.
Example 12. Fig. 8(b) shows the tree IRN for a road network

Gr . Each nonleaf node corresponds to a subgraph of Gr ;
e.g., G2

r corresponds to the right subgraph in Fig. 8(a).
The borders of each node are shown in the rectangular
boxes under that node. For instance, G2

r has 3 borders
{r3, o5, r13}, and its distance matrix is listed beside it.
The vertices of each leaf node are shown in rounded
rectangles; e.g.,G6

r has 2 borders {r13, r15} and 6 vertices
{r13, o4, r15, r14, o1, r16}.
While traversing IRN , we use a priority queue PQi to

maintain the nearest objects to each qi ∈Q. First, we locate
the leaf node of qi and objects O∗ with leaf(n) and construct
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Fig. 8. Road network index.

the occurrence list in a bottom-up manner. Initially, we cal-
culate the network distance from every object o∈L(leaf(qi))
to qi, and place 〈o, dist(qi, o)〉 in PQi. Next, we iteratively
dequeue the first element 〈e, dis〉 of PQi and address it
separately according to whether e is an object or a node. This
process continues until an element with a dis greater than ε
is dequeued from PQi, indicating that all objects within the
network distance threshold ε in Ri have been retrieved. The
same condition applies for a directed road network.
Example 13. Continuing Example 4, the range search process

based on IRN is as follows. First, we construct the
occurrence list L based on {o1, o4, o5, o6, o8}, access G5

r=
leaf(r6) as the current node pointer Tn, and determine
the minimum network distance Tmin from q1 to each
border within Tn; here, Tmin = 0 since r6 is a border.
Next, we push dist(r6, o5) = 3.5 and dist(r6, o8) = 3.8
into PQ1 as o5, o8∈L(G5

r). Now, because 3.5>Tmin, we
update Tn to G2

r and Tmin=dist(r6, G2
r)=3.5 and push

dist(r6, G
6
r)=1 into PQ1 as G6

r∈L(Tn). Then, we access
G6
r , and push dist(r6, o4)=5.2 and dist(r6, o1)=7.5 into

PQ1 as o4, o1 ∈ L(G6
r). We now insert 〈o5, 3.5〉 into R1

because 3.5 ≤ Tmin. Because dist(r6, o8) > Tmin, Tn is
updated to G0

r , Tmin=∞, and dist(r6, G1
r)=5 is pushed

into PQ1 as G1
r ∈L(Tn). Finally, we insert 〈o8, 3.8〉 into

R1 and terminate the process because dist(r6, G1
r)>ε.

5.3 Round-robin Optimization
As illustrated in Section 3.2, the CE algorithm places every
possible expansion into a queue, and both the Lc and Li
strategies may be repeatedly executed until the top-j objects
are found for the current user group in a CGNN/MCGNN
query. If any selected user can be identified as unlikely to
be included in the most cohesive k-core, the search space
can be reduced in both the social and spatial domains,
and the overall query performance can be improved. In
this section, we first deduce an intrinsic distance restriction
between query points and then apply this restriction to
the maximal f(·) value in the heuristics before a tie in
social distance can arise. The procedure is repeated in a
round-robin fashion; in other words, the intrinsic distance
restriction is re-applied w.r.t. each selected vertex until the
valid most cohesive k-core is obtained. On the one hand,
this allows us to filter the invitees to reduce the diversity of
the generated candidates, eliminating the need to find and
verify objects for Gkmax

s (uq, c) that are qualified in terms
of social connections but not locations. On the other hand,
the intrinsic distance restriction consolidates the attendees
such that the objects of interest will be relatively close; thus,
both the acquisition of the candidate set S and the network
expansion are sped up.
Theorem 8. The network distance between the locations of each

pair of users from Gkmax
s (uq, c) in road network Gr must be

less than or equal to 2ε.
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TABLE 2
Statistics of the Datasets

Dataset Vertices Edges dgavg dgmax h
California 21,048 21,693 2.06 8 -
San Francisco 174,956 223,001 2.55 8 -
Florida 1,070,376 1,356,399 2.53 12 -
Western USA 6,262,104 7,624,073 2.43 14 -
Facebook 4,039 88,234 43.69 1,045 8
Brightkite 58,228 214,078 7.35 1,134 17
Gowalla 196,591 950,327 9.67 14,730 15
Orkut 3,072,441 117,185,083 76.28 33,313 7
Twitter 17,069,982 476,553,560 55.84 109,214 8

Example 14. Continuing Example 3, if ε=4, we can calculate
dist(r3, r9) = 9 > 2ε from IRN because s21 and s26
are at r3 and r9, respectively. By Theorem 6, H2 in
Fig. 4 can be discarded via Lc or Li instead of during
verification. Thus, only Gs(H1) is a valid solution for
the most cohesive k-core.

6 EXPERIMENTAL EVALUATION

This section evaluates the effectiveness and efficiency of our
algorithms for both CGNN and MCGNN queries through
comprehensive experiments.

6.1 Experimental Setting
Datasets. Five real-life social networks7, Facebook (FB),
Brightkite (BR), Gowalla (GO), Orkut (OR) and Twitter (TW),
and four real road networks8,9, California (CA), San Francis-
co (SF), Florida (FL) and Western USA (WU), are investigated
in our experiments. CA and SF contain detailed street net-
works, whereas FL and WU consist only of highways and
main roads. The statistics of these datasets are presented in
Table 2, where h denotes the average longest social distance.

As only CA has POI information with category name
(e.g., hospital/school), we additionally map the real-world
POIs and associated keywords from [14] to SF, FL and
WU, which are extracted from OpenStreetMap10. The rating
information11 is extracted from Foursquare website, where
social network user can be tagged a few ratings of POIs. In
addition, we map each user vs to the location vr in the road
network that matches the scale of his/her social network as
follows: We first project the spatial locations into the range
[0, 1] in each dimension, and we generate Ls(vs) randomly
(or by drawing from recent check-ins). If vr has the smallest
Euclidean distance to Ls(vs) in the projection space, we
assume that vr is the current location of vs.

Algorithms. To our knowledge, no previous works have
investigated the MCGNN problem on general road-social
networks while [15] only investigated the CGNN problem.
In this paper, we implement and evaluate two algorithms
for CGNN queries and five algorithms for MCGNN queries
as described in Table 3. Since the CE algorithm introduced
in Section 3.2 is relatively slow even on a small road-social
network, as illustrated by Exp-1 and Exp-2, we employ
the optimal heuristic selection strategy Li as the baseline
algorithm in this empirical study on the problem of finding
the most cohesive k-core and retrieving the top-j objects

7. http://snap.stanford.edu/data/index.html
8. https://www.cs.utah.edu/ lifeifei/SpatialDataset.htm
9. http://www.dis.uniroma1.it/challenge9/index.shtml
10. http://www.openstreetmap.org
11. https://archive.org/details/201309 foursquare dataset umn

TABLE 3
Summary of Algorithms

Technique Description
SD social-distance-based pruning (Theo-

rem 7)
εNN range search for nearest neighbors with-

in a threshold ε by the road network
index (Section 5.2)

IR intrinsic distance restriction between
users in Q (Theorem 8)

Query Algorithm Description

CGNN
query

CGNN consists of Li strategy (Equation 5) with
SD, range filter (Algorithm 2), and veri-
fication techniques (Theorems 2 and 3)

CGNN-opt CGNN+εNN+IR; incorporates IR into Li
strategy for alternative validation, and
objects within ε are computed with εNN
strategy instead of range filter (Algorith-
m 2) adopted in CGNN

MCGNN
query

TRS consists of Li with SD and IR, and the
threshold ripple selection (Theorem 5)

TE consists of Li with SD and IR, and the
threshold expansion (Theorem 6 and Al-
gorithm 5)

HE consists of Li with SD and IR, and the
holistic expansion (Algorithm 6)

TE-opt the network distances from any qi to
vertices/objects are computed over IRN

HE-opt distsum(o,Q)’s lower bound is comput-
ed over IRN in addition to the network
distances from any qi to vertices/objects

with or without multi-criteria, respectively. In Table 3, we
also define the abbreviation for each technique used in the
considered algorithms.

Parameters. We conducted experiments in different set-
tings by varying 7 parameters, including the number of
attendees c, the degree distribution of query user uq , the net-
work distance threshold ε, the number of qualified objects j,
the object ratio (number of objects to number of edges), the
tradeoff α, and the number of sorted accesses performed at
one time (i.e., x1 and x2, in the threshold ripple selection).
The default values of c, j and α were 4, 3 and 1, respectively,
and both x1 and x2 were equal to 3; in CA, SF, FL and WU,
the default values of ε were 1, 4, 40 and 150 km, and the
default object ratios were 0.1, 0.1, 0.01 and 0.01, respectively.

All programs were implemented in standard C++ and
compiled with G++ in Linux. All experiments were per-
formed on an Ubuntu Linux System with an Intel Xeon
E7-4820 2 GHz CPU and 1 TB of memory. The query user
uq was randomly assigned 25 times in each vertex degree
interval (totally 4 in Exp-3), then algorithms were tested for
each value of different parameters (with the others set to
defaults) respectively. The results shown in each experiment
were the average of 100 independent tests. Due to the space
limitation, we present more detailed experimental results
and discussions in the supplemental material.

6.2 Performance Evaluation for CGNN Queries

We investigate the efficiency of two algorithms, CGNN and
CGNN-opt, for CGNN queries listed in Table 3, and then
compare each under different settings.

Exp-1: We evaluated the exact algorithm and the two
heuristics for finding the most cohesive k-core described
in Section 3.2, namely, CE, Lc and Li, on the five social
networks for c = 32. The accuracy (%Lc or %Li) is 1 if the
entire user group obtained by Lc/Li is included in the CE
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results; otherwise, it is proportional to the number of users
included. Fig. 9(a) indicates that CE is three to four orders
of magnitude slower than the other two methods because
CE enters the next iteration if it fails in the current round,
while Lc/Li ends once the size expands to c. Although
FB is small, CE takes more time on it than on BR or GO
because SD depends on the social distance and c. As shown
in Table 2, h= 8 in FB, which is sufficient to support good
SD performance only for c≤9. The average accuracies of Lc
and Li are essentially stable at approximately 0.9, but Li is
nearly an order of magnitude faster. Thus, Li is selected for
all the algorithms listed in Table 3.

Exp-2: We examined kini− kmax, representing the dif-
ference between cn(Cmax(uq, c)) and the coreness of the
attendees, with respect to various social networks. Fig. 9(b)
shows that the curves and the bars (e.g., kLimax, denoting the
coreness kmax retrieved by Li) of Lc and Li are very close for
various social networks with c=16. This experiment again
demonstrates the effectiveness of Lc/Li for CGNN queries.

Exp-3: We evaluated kmax with respect to the degree
distribution of uq , representing the variation of c, in the five
social networks, as shown in Fig. 10(a). kmax increases when
the degree distribution of uq spans a larger interval, which
corresponds to CE/Lc/Li finding the maximum coreness in
Cmax(uq, c). For FB, OR and TW, kmax is always close to the
upper bound of interval, followed by GO. From the average
degrees in Table 2, we conclude that FB, OR and TW are of
relatively high density, affecting the performance of SD.

Exp-4: We explored the CGNN query performance c=64
of CGNN and CGNN-opt, on real-world scale-commensurate
social-road networks: FB+CA, FB+SF, BR+CA, BR+SF,
GO+SF, GO+FL, OR+FL, OR+WU, TW+FL and TW+WU. Fig. 10(b)
shows that the algorithms can satisfy user requirements for
great numbers of attendees and that the query performance
is rather stable as the scale of the road-social network varies.

Exp-5: We evaluated the efficiency and efficacy of CGNN
and CGNN-opt for varying ε. In Fig. 11(a), all curves (run-
ning times) are rising slowly with increasing ε. Since the
variation of ε does not affect the acquisition of candidate
set S and the visited objects expanded during subsequent
verification, the difference in running times is mainly de-
termined by the efficiency of object expansion from query
points. Thus, in CGNN-opt, εNN significantly accelerates the
acquisition of objects within ε, due to IRN .

Exp-6: We examined the effect of j on CGNN and
CGNN-opt, as shown in Fig. 11(b). Here, the query per-
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Fig. 11. Query performance for CGNN queries (datasets: OR+FL).

formance is dominated by the road network techniques
because finding the top-j objects requires only a few seconds
due to the relatively small values of c and ε; in particular,
CGNN-opt is twice as fast as CGNN. In addition, the candi-
date size |S| and the total number of visited objects (#POIs)
increase with increasing j, where the latter is slightly larger
than the former because our verification technique discards
most candidate objects.

Exp-7: We evaluated the effect of the ratio of the number
of objects to the number of edges (i.e., Er) on CGNN and
CGNN-opt, as shown in Fig. 11(c). This ratio varies from
0.0001 to 1 in FL. We then selected the objects with the
keyword “restaurant” within default ε. In the case where the
top-j objects are ensured to be found, both the running times
of CGNN and CGNN-opt are rising. The smaller the ratio,
the more sparsely the objects are uniformly distributed.
Hence, the efficiency of range filter in Section 3.3 is almost
unchanged when ε is fixed to the default, but the average
cost of verification tends to be lower due to fewer POIs, as
observed from |S| and total number of expanded objects.

Exp-8: We examined the query processing time with
respect to the number of attendees. Fig. 11(d) shows the
results; all curves increase as c increases. As long as Li is
fast enough, optimizations of the road network dominate
the CGNN query efficiency. The more invitees there are, the
more objects need to be validated. In particular, CGNN-opt
is twice as fast as CGNN because εNN uses the distance
matrix of IRN , eliminating the need for computing network
distances incrementally and accumulatively.

6.3 Performance Evaluation for MCGNN Queries

We investigate the efficiency of the five algorithms, namely,
TRS, TE, HE, TE-opt and HE-opt, for MCGNN queries
listed in Table 3, then compare each under different settings.

Exp-9: We evaluated the impact of two parameters, i.e.,
x1 and x2, denoting the number of sorted accesses per-
formed on each sorted list at one time, in the threshold
ripple selection (TRS) described in Section 4.1. As shown
in Fig. 12, we set x2=3 (resp. x1=10) and vary x1 (resp. x2)
in range [1, 9] (resp. [8, 16]). Larger x1/x2 may take longer to
find objects seen in every list Li, especially with more lists,
i.e., m. Thus, we set x1 = x2 = 3 for TRS in the subsequent
experiments. It is noting that we use TRS on behalf of the
entire threshold selection strategies since its performance is
superior to that of threshold selection (TS) in Section 4.1
according to our experimental observation.
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Exp-10: We explored the MCGNN query performance for
c= 64 of TRS, TE, HE, TE-opt and HE-opt, on real-world
scale-commensurate social-road networks: FB+CA, FB+SF,
BR+CA, BR+SF, GO+SF, GO+FL, OR+FL, OR+WU, TW+FL and
TW+WU. Fig. 13 shows that the algorithms can satisfy user
requirements for great numbers of attendees and that the
query performance is rather stable as the scale of the road-
social network varies.
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Fig. 13. Scalability for MCGNN queries (c = 64).

Exp-11: We evaluated the efficiency and efficacy of TRS,
TE, HE, TE-opt and HE-opt for varying ε. In Fig. 14, all
curves (running times) and the bars denoting the numbers
of accessed vertices/edges during expansion in TE and HE
are rising with increasing ε; but neither the number of
sorted accesses in TRS nor the numbers of common visited
objects in TE and HE are not sensitive to ε since greater
distsum dominates the overall score of POI. In TE-opt and
HE-opt, IRN significantly accelerates the computation of
network distances from any qi to vertices/objects within ε
and the computation of lower bound against distsum(o,Q),
respectively. Moreover, HE is relatively slower than the
other algorithms, mainly due to the large part of the road
network it has to explore from all query points, although it
avoids shortest path computations that could incur a large
overhead. For TE and HE, the same vertices and edges can
be visited by different query points, except that TE does not
need to recompute distsum(o,Q) but HE may check that for
same object o at most c times.
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Fig. 14. MCGNN query performance with respect to ε.

Exp-12: We examined the effect of j on the five algo-
rithms for MCGNN queries, as shown in Fig. 15. Since
the dominating cost is the road network expansion, the
performance scales well with j and the running time in-
creases slowly as j increases; in particular, the number of
vertices/edges accessed during the network expansion in
TE and HE increases linearly with j, but the number of
corresponding common visited objects is not particularly
sensitive to this parameter, where its change is very small
or even constant compared to the change in the number of
vertices/edges; so is the number of sorted accesses in TRS.

Exp-13: We evaluated the effect of the ratio of the number
of objects to the number of edges (i.e., Er) on the five
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Fig. 15. MCGNN query performance with respect to j.

algorithms for MCGNN queries, as shown in Fig. 16. The
ratio varies from 0.001 to 1 in SF and from 0.0001 to 1 in FL.
We then selected the objects with the keyword “restaurant”
within each default ε. The running times of all algorithms
are decreasing because objects are more densely and u-
niformly distributed. Hence, the average cost of network
expansion tends to be lower because more POIs derive the
top-j results faster, i.e., earlier termination, as observed from
the number of vertices/edges accessed during the network
expansion in TE and HE, and the number of sorted accesses
in TRS. However, the number of common visited objects is
increased due to the increasing relative density of POIs scale
against |Er|, i.e., the ratio.
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Fig. 16. MCGNN query performance with respect to the object ratio.

Exp-14: We examined the effect of α on the five algo-
rithms for MCGNN queries, as shown in Fig.17. As α is
in the denominator of Equation 3 and α > 1 increases
the importance of distsum over Rs, which means that POI
with lower total travel cost (i.e., closer to Q) can obtain
higher overall score with increasing α. Thus, not only does
the number of sorted accesses in TRS decrease, so does
the number of POIs and vertices/edges accessed during
network expansion in TE and HE, resulting in reductions
in the running times.
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Fig. 17. MCGNN query performance with respect to α.

Exp-15: We evaluated the query processing time with
respect to the number of attendees (i.e., c) on five real-world
scale-commensurate social-road networks: FB+SF, BR+SF,
GO+FL, OR+WU and TW+WU. Fig. 18 shows the results; all
curves increase as c increases. As long as Li is fast enough,
the dominating cost for MCGNN query efficiency is the road
network expansion. The more invitees there are, the more
objects need to be validated. TE’s execution cost becomes
higher due to the larger number of shortest path queries it
has to perform. The cost of HE increases fast with c, because
the same vertices/edges and their corresponding objects are
checked multiple times (at most c) and the cost of each
check is directly proportional to c. Among the algorithms,
TE and TE-opt are superior to the other three; in particular,
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Fig. 18. MCGNN query processing time with respect to c.

TE-opt is twice as fast as HE due to the distance matrix in
IRN and the earlier termination condition.

7 RELATED WORK

Geo-social query processing. [16] formulates a framework for
geo-social query processing that builds queries based on
atomic operations, by which some complex queries (e.g.,
nearest friends and range friends) can be answered. Re-
cently, Li et al. [17] have studied spatial-aware interest
group queries in LBSN and presented efficient processing
algorithms. A geo-social k-cover group query [18] retrieves
a minimum user group in which each user is socially re-
lated to at least k others and their associated regions (e.g.,
familiar/service regions) jointly cover all the given query
points. [19], [20] find the largest community, which has
minimum radius in Euclidean space, containing query user.
[21] studies the kNN search on road networks incorporating
social influence. Given a location q and a constant k, a socio-
spatial group query [22] returns an approximate group of
users such that each has no social relationship with at most
k others in the group on average and their total distance
to q is minimized. This approach focuses only on Euclidean
spatial distances, and the assembly point is designated in
advance; if queries with the same parameters are sent by
diverse users, the results are identical.

k-core. k-core computation, first introduced by Seidman
[4], is a fundamental graph problem with a wide spectrum
of applications, such as network analysis [23], graph clus-
tering [24], and network visualization [25]. A linear-time in-
memory algorithm for computing core numbers of all ver-
tices in a graph is presented in [9]. I/O-efficient algorithms
for core number computation on graphs that cannot fit in
the main memory of a machine are proposed in [26], [27].
Whether k-core decomposition of large networks can be
computed on a consumer-grade PC is explored in [10]. Local
computation and estimation of core numbers are studied in
[28], [29]. Algorithms for core number maintenance on dy-
namic graphs are proposed in [30]. However, the most cohe-
sive k-core model is better suited to personalized user group
queries (i.e., attendees invited by different query users are
varied), and concurrently has more desirable properties, i.e.,
society, cohesiveness, connectivity and maximization.

Nearest neighbor search. As one of the most important
queries among NN search variants, a group nearest neigh-
bor (GNN) query [1] retrieves the point(s) in a given set of
points P with the smallest sum of distances to all points
in another given set of points Q. An aggregate nearest
neighbor (ANN) query [2], which returns the point(s) in
P that minimizes an aggregate function with respect to
Q, was subsequently proposed as an extension of GNN
query, which is equivalent to ANN query with an aggregate
function of sum exclusively. As the methods of [1], [2] are
applicable only in Euclidean space, [31] investigated the
solution of ANN queries in road networks. However, this
approach is not applicable in the case of edge weights that

are disproportionate to the corresponding physical lengths,
and the query performance is inefficient when the scale of
Q is large. Moreover, [32] addresses the problem of ANN
query monitoring for moving objects in Euclidean space.
[33] discusses ANN queries with moving query points. [34]
explores ANN queries for query points with location priva-
cy concerns. [35], [36] addresses ANN queries on uncertain
databases and graphs. In these works, neither the social
connectivity among the spatial query points inQ nor textual
descriptions of the spatial objects in P are considered.

Our work, being more flexible and scalable, is totally dif-
ferent from that described above: (1) the assembly points are
analyzed dynamically with regard to the optimal attendees,
(2) the unique social topology can be adequately considered
due to the limited number of attendees, (3) the core number
k is self-optimized to obtain the highest familiarity, and (4)
distance restrictions based on a combination of sum and max
functions are simultaneously applied to road networks. In
real life, CGNN queries are often the most natural way to ex-
press the requests of an activity initiator or mobile user who
wishes to organize an offline activity. To our knowledge, this
paper proposes the first practical algorithm for solving the
CGNN problem on general road-social networks.

8 CONCLUSIONS

In this paper, we define two pragmatic query types, namely,
CGNN and MCGNN queries, to identify suitable spatial-
textual objects as assembly points for a group of optimal
attendees over road-social networks. To our knowledge, no
previous solution has addressed such types of scenarios
in automated offline activity planning services based on
the social and geospatial relationship of activity attendees.
We show that both problems are nontrivial, and (1) for
CGNN queries, an efficient filtering-and-verification frame-
work is devised; (2) for MCGNN queries, two selection-
based and two expansion-based threshold algorithms are
proposed. Moreover, it is shown that with optimizations,
the performance of both queries is improved and less time
is required to find optimal solution in both social and spatial
domains. Experimental results for real-world road-social
networks significantly demonstrate that our approaches are
highly scalable and robust in both efficiency and efficacy. A
possible direction for future work is to integrate other user
attributes, e.g., user preferences, to filter activity attendees.
Potential future research also includes joint social and road
processing on networks stored in a distributed manner.
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