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Fast Single Image Super-Resolution via
Self-Example Learning and Sparse Representation

Zhiliang Zhu, Member, IEEE, Fangda Guo∗, Hai Yu and Chen Chen, Student Member, IEEE

Abstract—In this paper, we propose a novel algorithm for fast
single image super-resolution based on self-example learning and
sparse representation. We propose an efficient implementation
based on the K-singular value decomposition (SVD) algorithm,
where we replace the exact SVD computation with a much faster
approximation, and we employ the straightforward orthogonal
matching pursuit algorithm, which is more suitable for our
proposed self-example-learning-based sparse reconstruction with
far fewer signals. The patches used for dictionary learning are
efficiently sampled from the low-resolution input image itself
using our proposed sample mean square error strategy, without
an external training set containing a large collection of high-
resolution images. Moreover, the ℓ0-optimization-based criterion,
which is much faster than ℓ1-optimization-based relaxation, is
applied to both the dictionary learning and reconstruction phases.
Compared with other super-resolution reconstruction methods,
our low dimensional dictionary is a more compact representation
of patch pairs and it is capable of learning global and local
information jointly, thereby reducing the computational cost
substantially. Our algorithm can generate high-resolution images
that have similar quality to other methods but with a greater than
hundredfold increase in the computational efficiency.

Index Terms—Approximate K-singular value decomposition,
sample mean square error, self-example, single image super-
resolution, sparse representation.

I. INTRODUCTION

SUPER-resolution (SR) [1] image reconstruction aims to
restore original high-resolution (HR) information beyond

the Nyquist frequency from single or multiple low-resolution
(LR) images based on reasonable assumptions or prior knowl-
edge of the generation model that maps the LR images to the
HR image. SR plays a very active and important role in image
processing research because it provides solutions that over-
come the resolution limitations [2], [3] attributable to low cost
digital imaging sensors (such as monitors or mobile phones)
and imperfect imaging environments (such as satellites). The
conventional approach for synthesizing a new HR image uses
one or more LR images. However, if the number of LR images
is inadequate, this causes uncertain blurring operations and
ill-conditioned registration; thus, SR reconstruction is usually
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considered to be an ill-posed problem [4]-[6]. Current SR
reconstruction algorithms can be divided into interpolation [7]-
[9], multiple-image SR [10]-[12], and example-based SR [13]-
[15]. Some algorithms deliver good performance but they are
computationally inefficient, and vice versa. Therefore, a fast
SR reconstruction algorithm with reasonably high performance
is needed to achieve an acceptable trade off of performance
and computational cost.

Interpolation approaches are used to generate HR images
from a single LR image with smoothing methods such as
bilinear or bicubic interpolation. These approaches are com-
putationally efficient but they often produce overly smooth
HR images with ringing and jagged artifacts. Interpolation
by exploiting the natural image priors can produce relatively
more favorable results. Dai et al. [8] obtained the local image
patches using foreground and background descriptors before
reconstructing the sharp discontinuity between them. Sun et
al. [9] explored the gradient profile prior of local image
structures and applied it to SR. In traditional multiple-image
SR reconstruction, an HR image can be obtained from a set of
LR images of the same scene with sub-pixel misalignments.
However, this method is unsatisfactory because it only obtains
a small improvement in resolution, while requiring much more
computation time than the simple interpolation method.

In example-based SR reconstruction, the corresponding re-
lationships between LR and HR image patches are learned
from a large number of known LR and HR image patch pairs in
the training set, before the learned corresponding relationships
are used to reconstruct a new HR image. Thus, it is possible
that the missing HR image details can be obtained from HR
images training set. Yang et al. [16] presented a sparse coding
model for learning two dictionaries from an external training
set for LR and HR images, which allows the LR and HR
image patch pairs to share the same sparse representation.
Zeyde et al. [17] modified Yang et al.’s algorithm [16] by
including a major simplification of the overall process in
terms of both the computational complexity and the algorithm
architecture. Zhang et al. [18] proposed a sparse representation
based SR method by learning a dual dictionary and replacing
the sparse recovery step by simple matrix multiplication to
reduce the computational complexity. At present, the most
common implementation of example-based SR reconstruction
[16] generates two dictionaries simply by randomly sampling
raw patches from images with similar statistical characteristics
in the training set. The performance of this method depends
greatly on the number of atoms in the two dictionaries, i.e.,
the size of a dictionary pair. If the number of atoms in the
dictionary pair is reduced, the SR reconstruction result will
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degrade remarkably. However, learning a large number of
atoms in a dictionary pair requires a very long computation
time for the algorithm. In addition, the example-based SR
reconstruction method that uses a training set depends greatly
on the HR images in the database. Another essential question
is whether a global dictionary or dictionary pair exists that
can accurately represent all image patches. Learning a training
set may allow more image samples to be employed, but the
accuracy of the information provided by the database cannot
be guaranteed for any given LR image. The reconstructed
HR image may seem plausible, but the details acquired from
the database may be invalid because a global dictionary or
dictionary pair that accurately represents all image patches is
currently unavailable.

Recently, the research focus has moved towards single
image example-based SR reconstruction, which can overcome
the limitations of example-based SR reconstruction using a
training set. It uses only the LR image itself and can be
implemented with low computational cost and memory con-
sumption compared to example-based SR reconstruction using
a training set. The fundamental assumption of this method is
that a large number of similar patches may exist in the same
LR image at both the same scale and across different scales.
Glasner et al. [19] combined traditional multiple-image with
example-based SR techniques and proposed the utilization of
patch redundancy within and across various patch scales to
reconstruct the unknown HR image. The basic prior used in
[19] is that numerous similar image patches exist in most
natural images. These similar patches with the same scale
are regarded as patches from different LR images, whereas
those with different scales are considered as HR and LR image
pairs. In [20], the LR image is used to form two codebooks,
which correspond to the low-frequency and high-frequency
components of image patches, and by searching for the most
similar image patches in the low-frequency codebook, the
corresponding patch in the high-frequency codebook can be
added to the target image patch to rectify the loss of high-
frequency information. Chen et al. [21] proposed an SR algo-
rithm that exploits the self-similarities of image patches within
a single image by using the multihypothesis (MH) prediction
strategy, which was also developed for compressive sensing
(CS) [22] image reconstruction [23], [24] and hyperspectral
image classification [25], [26]. Specifically, each patch of the
input LR image is represented by a linear combination of
the spatially surrounding hypothesis patches. Dong et al. [27]
exploited the image nonlocal self-similarity to obtain good
estimates of the sparse coding coefficients of the original
image, before centralizing the sparse coding coefficients of
the observed image relative to these estimates. Pan et al.
[28] explored the structural self-similarity (SSSIM) index,
which reflects the degree of image self-similarity, rather than
comparing the reference and original images. The SSSIM
index is higher if there are more similar patches within one
remote sensing image, thereby obtaining better reconstruction
results.

In this paper, we propose a novel approach for learning
only one dictionary effectively from the input LR image itself
without an external HR images training set. Similar image

patches present in the same image are used to solve the SR
problem as extra information. In the framework of CS theory,
LR image patches can be regarded as a compressive sampling
version of HR image patches under the conditions of the
sparsity of signals and the incoherence between the sensing
and projection matrix. When the HR image patches can be
represented as a sparse linear combination of elements from a
dictionary that is not coherent with the sensing matrix, we can
recover the SR image patches accurately from the LR version.
The CS framework is used to add this extra information to
a reconstructed HR image. Obtaining extra information from
similar patches in a single image is equivalent to deriving this
information using different LR images, and this concept is
illustrated in [28]. We use an interpolation of the LR image
as the training sample in the dictionary learning stage. Our
method can introduce extra information into the dictionary
and allow an HR image to be obtained from a single LR
image because similar image patches in the LR image provide
the necessary extra information. This information can be
introduced into the dictionary and used to reconstruct the
HR image. The image patches can find more sparse repre-
sentations [29] using our unique dictionary, which is a more
compact representation of patch pairs, thereby improving the
SR reconstruction results. Compared with previous methods,
our algorithm can generate HR images that are competitive in
quality, but our method has significantly lower computational
complexity.

The remainder of this paper is organized as follows. In
Section II, we explain the process employed by the training
dictionary and the fast SR reconstruction algorithm based on
self-example learning and sparse representation. In Section
III, we report experimental evaluations of the performance of
our method, which we compare with other related algorithms.
Finally, we conclude this paper in Section IV.

II. FAST SR FROM SELF-EXAMPLE AND SPARSE
REPRESENTATION

Theoretical results obtained from CS suggest that the sparse
representation can be recovered correctly from the LR obser-
vation in mild conditions [30]. Inspired by this finding, we
search for a sparse representation of each patch in the LR
input and then use the coefficients of this representation to
generate the HR output. In this section, we first address the
sparse representation of image patches under the framework
of CS, before introducing the self-example dictionary learning
strategy and its approximate realization based on the K-
singular value decomposition (K-SVD) algorithm [31]. Finally,
the new fast single image SR algorithm based on self-example
learning and sparse representation is described in detail.

A. Sparse Representation of Image Patches

An LR image patch of size N × N is converted into an
N2 × 1 column vector ILR ∈ ℜp, p = N2. We want to
reconstruct its corresponding mN×mN HR version, where m
is a magnification factor, before converting it into an m2N2×1
column vector IHR ∈ ℜq , q = m2N2. The relationship
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between the two column vectors can be described by a sensing
matrix S:

ILR = HL · IHR = S · IHR, S ∈ ℜp×q, (1)

where H represents a blurring filter and L is the downsampling
operator. If we regard ILR as a degraded version of IHR, then
obtaining IHR from the observed ILR is obviously ill-posed,
where the solution is not unique. However, CS theory proves
that reconstructing IHR is feasible under the condition of a
sparse prior model. Thus, IHR can be represented as a sparse
linear combination of elements from a dictionary Dh, which
are not coherent with the sensing matrix S:

ILR = S · IHR = S ·Dhα, (2)

where α ∈ ℜZ , ∥α∥0 = K ≪ Z, and Z is the number
of atoms in the dictionary. Under the condition of sparsity,
the HR image patch IHR can be reconstructed by solving the
following optimization problem:{

min ∥α∥0
s.t. ILR = S · IHR = S ·Dhα = Dlα.

(3)

Searching for a suitable dictionary to sparsely represent all of
the HR image patches IHR is a very difficult problem. In order
to determine Dh, we use the bicubic interpolation version of
the LR input image, which we denote as the pseudo-HR image,
where it is magnified by the same magnification factor of m
that is used for dictionary learning. We only use the LR input
image itself to learn the dictionary without an external HR
images training set; thus, the dictionary learning process is
based on a self-example patch-based learning strategy. The
pseudo-HR image that contains many similar image patches,
as mentioned in [28], can be viewed as a corrupted version of
the HR image; thus, an HR image can be reconstructed from
it because similar image patches in the LR image provide the
necessary extra information that can be introduced into our
dictionary.

B. Selective and Efficient Sampling

Example-based SR algorithms usually involve searching
patches in a large database or the input image, which are
computationally expensive. The best way of reducing the
SR time for real-time applications but without noticeably
tampering with the quality of image is an interesting current
research focus of single image example-based SR. Thus, we
propose a self-example sampling method within the pseudo-
HR version of input LR image. Instead of searching for patches
using a similarity measure such as the Euclidean distance,
we select the patch according to the threshold of the sample
mean square error (SMSE) [32], [33], which reduces the
computational complexity significantly.

Natural images tend to contain repetitive visual content.
In particular, small (e.g., 2 × 2) image patches in a natural
image tend to recur redundantly many times inside the image
at the same scale and across different scales. This observation
forms the basis of our single image SR framework without any
additional external information or prior examples. When much
smaller image patches are used, these similar patch repetitions

are frequent within and across image scales, even when we do
not visually perceive any obvious repetitive structure in the
image. This is because very small patches often contain only
an edge, a corner, etc. These patches are frequent at multiple
image scales in almost any natural image. Therefore, our aim
is to select more representative image patches.

First, we magnify the LR input image using bicubic inter-
polation by the same scale factor m to produce the pseudo-HR
image, where the pseudo-HR is the equivalent size to the HR
that we require ultimately. Next, we sample a certain number
n of different patches of size mN×mN , which are distributed
throughout the entire pseudo-HR image Xm. The n patches are
selected randomly to obtain sufficient patches for HR image
reconstruction. This ensures that we collect a large number
of similar image patch pairs from the LR image. We convert
each patch into an m2N2 × 1 column vector one by one as
Xn = {x1, x2, ..., xn−1, xn}, xi ∈ ℜq , i = 1, 2, ..., n − 1, n
and we compute the SMSE within each xi

SMSE(xi) =

∑m2N2

j=1 (xij −
∑m2N2

j=1 xij/m
2N2)2

m2N2 − 1
, (4)

where xi represents the column vector in Xn and xij is the
element of the j-th row in xi, j = 1, 2, ...,m2N2 − 1,m2N2.
To find the image patches that can sparsely represent the
HR image patches to ensure that the reconstruction error is
minimized, a threshold λ is used to remove all the smooth
column vectors with SMSEs that are less than λ. This is
because there are many similar image patches in a pseudo-
HR image but only some of them contain the necessary
HR or detail information required to reconstruct HR image
patches. To identify the patches that contain HR or detail
information from the total n image patches, we propose a
fast and efficient sampling strategy based on SMSE. In terms
of theory, the SMSE is higher when more HR and detail
information is contained in one image patch. In addition, based
on a large number of experiments, we found that the effect
of HR image patch reconstruction using smooth pseudo-HR
image patches was not as obvious as we expected and it
required a large amount of computation time. Based on this
theoretical observation, we set the SMSE threshold to extract
useful image patches. All of the similar patches are retained for
use as necessary extra information, which can be introduced
into the dictionary employed to reconstruct the HR image.
Finally, we denote all the remaining pseudo-HR image patch
column vectors in the set as Xh = {x1, x2, ..., xQ−1, xQ},
xi ∈ ℜq , i = 1, 2, ..., Q− 1, Q.

This sampling strategy based on self-example considers both
the global information and the specific details. For example, if
we sample n = 3000 patches of size mN×mN from pseudo-
HR image Xm, there are 3000 atoms in Xn. After filtering
by SMSE, the number of atoms in the column vectors set Xh

is ten times lower than that in Xn on average, which means
that there are around 300 atoms in Xh. SMSE can ensure
that all the necessary extra HR and detail information are
retained, and it also can simplify much of the subsequent work
without increasing the computational cost and it facilitates di-
mensionality reduction for our dictionary Dh, thereby leading
to a fast reconstruction phase. During the HR patch recon-
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struction procedures for a specific image in most algorithms,
the quantity of patches sampled starting from one patch and
moving to another with overlapping pixels in each direction
tends to be similar or even equivalent. The intrinsic factor
that affects the reconstruction speed is the size N of sampled
patches and dimensionality Z of atoms in the dictionary,
whereas the main extrinsic factor is the complexity of different
reconstruction algorithms. The dimensionality Z of atoms in
the dictionary immediately affects the efficiency of sparse
coding during dictionary preparation and the reconstruction
of sparse coefficients. The experimental results in Section III
show that the proposed algorithm is much faster than several
state-of-the-art approaches and it can achieve comparable or
even superior quality. Consequently, we propose a much more
accurate model for sparse coding by exploiting the local and
nonlocal redundancies within input images.

C. Self-Example Dictionary Preparation

Recent research [34] into image statistics has shown that im-
age patches can be represented well as sparse linear combina-
tion of elements from an appropriately selected over-complete
dictionary. Inspired by this observation, a self-example patch-
based dictionary learning strategy is proposed in this section
and a K-SVD algorithm is employed to learn this dictionary
to allow the sparse representation of LR input image patches.

Assume that the column vectors in Xh can be repre-
sented by a sparse linear combination in a dictionary Dh =
[d1, d2, ..., dZ−1, dZ ] ∈ ℜq×Z with each ∥dj∥2 = 1, j =
1, 2, ..., Z − 1, Z:

xi = Dh · βi, βi ∈ ℜZ , ∥βi∥0 ≪ Z (5)

Denote a sparse coefficient matrix β = [β1, β2, ..., βQ−1, βQ]
and we aim to design a dictionary that minimizes the recon-
struction error for a set of image patches.min

Dh,β
∥Xh −Dhβ∥2F

s.t. ∥βi∥0 ≤ Z, i = 1, 2, ..., Q− 1, Q
(6)

The K-SVD dictionary learning algorithm is used to solve
this problem based on a self-example patch-based learning
strategy, which can be described by two essential procedures:
1) search for the sparse coding of Xh when the dictionary is
fixed; and 2) update each atom (each column in the dictionary
Dh) and their corresponding coefficients (each row in the
sparse coefficient matrix β). K-SVD is an iterative algorithm
that updates the signal sparse coding in the current dictionary
and dictionary atoms alternately in order to map the current
signal preferentially. Overall, updating the dictionary atoms
and their corresponding sparse coefficients is a system that
accelerates the convergence speed of our algorithm greatly.

More specifically, the sparse coding problem can be im-
plemented using any pursuit algorithms such as basis pursuit
(BP) and orthogonal matching pursuit (OMP) [30]. In this
paper, we use OMP to minimize the objective function in
(6), which is much faster than ℓ1-optimization-based methods
[17]. Moreover, Batch-OMP [35] is an implementation of the
OMP algorithm that is optimized specifically for sparse coding

large sets of signals using the same dictionary. However,
the magnitude of our signals Xh, which are only sampled
from pseudo-HR without a substantial external training set
and they have already been filtered previously, is much lower
than that in [17], [35]. Based on complexity analysis and the
total number of operations required to sparse code a variable
number of signals using both OMP and Batch-OMP in [35],
we employ straightforward OMP, which is faster and more
suitable for sparse coding a relatively small amount of signals
with K-SVD.

In the dictionary learning process, we update the dictionary
by columns, where one atom in the dictionary is updated each
time and the other atoms in the dictionary remain fixed. We
denote the kth atom of the dictionary Dh as dk and the kth row
in the sparse coefficients matrix β as βk. Then, we transform
(6) such that dkβk can be separated from Dhβ [31], as follows

∥Xh −Dhβ∥2F = ∥Xh −
Z∑

j=1

djβ
j∥2F

= ∥Ek − dkβ
k∥2F ,

(7)

where Ek = Xh −
∑

j ̸=k djβ
j stands for the error for all Q

examples when the kth atom is removed. Before this problem
can be solved directly by SVD, βk is very likely to be filled,
since we do not preserve the constraint in (6). To achieve
this, the update step uses only the signals in Xh whose sparse
representations use the current atom. Let Ψ denote the indices
of the signals in Xh which include the kth atom. EΨ

k = XΨ
h −∑

j ̸=k djβ
j
Ψ is the error matrix without the kth atom, dk is the

updated atom, and βk
Ψ is the new row of coefficients in βΨ.

The entire K-SVD algorithm only converges to a local
minimum instead of a global one, and the analysis provided in
[31] only assumes a reduction of the target function value in
(7), thereby improving a given initial dictionary Dh rather than
finding an optimal solution. Therefore, a much faster approach
is to utilize an approximation of (7) as long as it ensures a
reduction of the final target function.

In our implementation, we replace the exact SVD compu-
tation with a much faster approximation, which employs a
single iteration of alternate-optimization over the atom dk and
the coefficients row βk, which is given as follows

dk = Ek(β
k)T /∥Ek(β

k)T ∥2
βk = (dk)

TEk,
(8)

then we replace the non-Ψ indices (original zero entries) in
βk with zeros to preserve the constraint in (6).

This process is known to ultimately converge to the op-
timum, and supplies an approximation which reduces the
penalty term. Our experiment shows that a single iteration of
this process is sufficient to provide very close results to the full
computation. A significant advantage of this approximation is
that it eliminates the need to explicitly decompose the matrix
EΨ

k . The exact SVD computation is both time and memory
consuming. It can be avoided by only computing the products
of the matrix Ek with vectors in the approximate formula (8).
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Fig. 1. Two HR image patch dictionaries trained by Eq. 6 using n = 3000
pseudo-HR image patch pairs sampled from the bicubic interpolation versions
of LR images (128 × 128) of Lena and Barbara magnified by a factor of
m = 4. A dictionary of size 64 × 64 was learned with an SMSE threshold
of λ = 1100 for each pseudo-HR image patch of size 8 × 8. Left to right:
dictionary for Lena and dictionary for Barbara.
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Fig. 2. The total computation time (including the dictionary learning and
reconstruction phases) and PSNR of the reconstructed “Clown” image (256×
256) magnified by a factor of m = 2 with various sample mean square error
thresholds for each pseudo-HR image patch (in seconds and dB, respectively).

D. Fast SR

Given a single input LR image Y of size B × B and a
magnification factor m, we want to reconstruct the HR image
X of size mB×mB. In the first step, we obtain the pseudo-
HR image Xm of size mB ×mB. Y is then partitioned into
nonoverlapping patches of size N ×N . For each LR patch y,
a corresponding mN × mN pseudo-HR patch exists in Xm

at the same spatial location as y in Y .
Then, we exploit the sampling strategy discussed in Section

II-B and obtain the image patch column vectors set Xh based
on the SMSE threshold λ. Simultaneously, we employ the
approximate K-SVD algorithm to train the dictionary Dh and

we use the OMP algorithm to obtain the sparse coefficients
β with Xh in (6). In dictionary update stage, we calculate dk
and βk using (8) and ensure that the reconstruction error is
minimized until (7) remains unchanged.

In the image patch reconstruction procedure, we start from
the upper-left corner where o pixels overlap in each direction
and we also use the OMP algorithm to solve the corresponding
sparse coefficient αi for each LR patch IiLR, i = 1, 2, ..., T −
1, T , where T = (B/N)2:

min
αi

∥IiLR − S ·Dhαi∥22 s.t. ∥αi∥0 ≤ Z. (9)

In general, the optimization problem of (9) is NP-hard but
recent results [36] suggest that the desired coefficients αi can
be recovered efficiently by minimizing the ℓ1-norm provided
that they are sufficiently sparse. However, we still use the
faster ℓ0-norm for matching the algorithm, which is used as
the sparse coding algorithm in approximate K-SVD, because
of the better learning and reconstruction effects with the same
criterion. We can then generate each corresponding HR image
patch after finding the sparse representations, as follows.

ÎHR = Dhαi (10)

The reconstruction obtained from (10) yields an estimate
ÎHR of the HR image X̂ . To enforce a global reconstruction
constraint, we also project this initial reconstructed HR image
onto the solution space of Y = S ·X:

X∗ = argmin
X

∥S ·X − Y ∥22 + c∥X − X̂∥22. (11)

This optimization problem can be computed efficiently using
gradient descent. The update equation for this iterative method
is

Xt+1 = Xt + v[ST · (Y − S ·Xt) + c(X − X̂)], (12)

where Xt is the estimate of the HR image after the t-th
iteration and v is the step size of the gradient descent. We use
result X∗ obtained from this optimization as our final estimate
of the HR image. This image is as close as possible to the
initial reconstructed X̂ given by sparsity, while it respects the
reconstruction constraint.

The procedure of the SR reconstruction algorithm based
on the self-example patch-based dictionary machine learning
strategy and sparse representation in the framework of CS
theory is summarized by Algorithm 1. We consider that the
sensing matrix S has a bicubic interpolation relationship with
dictionary Dh and Dl in (3) because the pseudo-HR image is
obtained by bicubic interpolation from the LR image, which
means that Dh can be obtained by bicubic interpolation from
Dl.

III. EXPERIMENTAL RESULTS

In our experiments, we magnified 13 LR grayscale natural
images using bicubic interpolation, Yang et al.’s method,
Zeyde et al.’s method, Chen et al.’s method, Dong et al.’s
method, and our proposed approach with a factor of m = 2
and m = 4 by employing the processes described in the
previous sections, and we investigated the performance of our
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TABLE I
SUMMARY OF PSNR (DB), RMSE, SSIM, AND RECONSTRUCTION TIME (S) RESULTS FOR 13 TEST IMAGES, WHERE SIZE = 128× 128, SCALE FACTOR
m = 2, THRESHOLD OF SMSE λ = 900, AND PATCH NUMBER n = 3000 (TOTAL COMPUTATION TIME IN PARENTHESES USING THE PROPOSED METHOD).

m = 2, λ = 900, n = 3000
Algorithm PSNR RMSE SSIM TIME Algorithm PSNR RMSE SSIM TIME

Lena Crowd
Bicubic 31.09 7.11 0.9249 0.10 Bicubic 28.52 9.56 0.9008 0.11

Yang et al. 33.48 5.40 0.9513 114.46 Yang et al. 30.59 7.54 0.9378 123.60
Zeyde et al. 32.89 5.78 0.9502 2.42 Zeyde et al. 30.18 7.90 0.9315 2.44
Chen et al. 32.71 5.90 0.9491 184.69 Chen et al. 29.84 8.22 0.9300 159.87
Dong et al. 33.42 5.44 0.9484 224.06 Dong et al. 30.55 7.57 0.9335 233.51
Proposed 32.45 6.01 0.9458 1.71 (3.59) Proposed 29.92 8.14 0.9286 1.72 (9.30)

Barbara Girl
Bicubic 29.48 8.56 0.8688 0.11 Bicubic 32.66 5.93 0.9062 0.10

Yang et al. 30.93 7.25 0.8961 113.84 Yang et al. 34.98 4.55 0.9460 120.52
Zeyde et al. 30.76 7.39 0.8922 2.45 Zeyde et al. 34.97 4.55 0.9469 2.44
Chen et al. 30.52 7.60 0.8917 173.38 Chen et al. 34.69 4.69 0.9404 159.90
Dong et al. 30.97 7.21 0.8945 233.84 Dong et al. 35.00 4.53 0.9472 235.25
Proposed 30.45 7.61 0.8913 1.76 (7.79) Proposed 34.55 4.74 0.9402 1.69 (2.91)

Barbara2 Gold Hill
Bicubic 28.56 9.52 0.8218 0.12 Bicubic 30.79 7.36 0.8720 0.09

Yang et al. 29.66 8.38 0.8678 122.63 Yang et al. 32.11 6.33 0.9063 123.08
Zeyde et al. 29.59 8.45 0.8663 2.45 Zeyde et al. 31.89 6.49 0.9017 2.44
Chen et al. 29.30 8.73 0.8624 161.12 Chen et al. 31.61 6.70 0.8999 174.35
Dong et al. 29.70 8.35 0.8690 237.34 Dong et al. 32.26 6.21 0.9050 233.51
Proposed 29.49 8.55 0.8657 1.78 (2.77) Proposed 31.72 6.61 0.9033 1.72 (2.28)

Boat Man
Bicubic 28.27 9.84 0.8615 0.12 Bicubic 29.73 8.31 0.8789 0.11

Yang et al. 30.01 8.06 0.9048 122.46 Yang et al. 31.76 6.58 0.9197 123.79
Zeyde et al. 29.59 8.45 0.8991 2.44 Zeyde et al. 31.42 6.85 0.9193 2.44
Chen et al. 29.35 8.66 0.8965 160.79 Chen et al. 31.05 7.14 0.9112 160.16
Dong et al. 30.01 8.05 0.9040 234.35 Dong et al. 31.69 6.64 0.9145 235.92
Proposed 29.32 8.70 0.8952 1.71 (2.34) Proposed 30.90 7.23 0.9103 1.70 (2.63)

Cameraman Peppers
Bicubic 28.87 9.19 0.9157 0.10 Bicubic 31.03 7.16 0.9462 0.10

Yang et al. 31.32 6.93 0.9463 123.78 Yang et al. 33.57 5.34 0.9663 117.11
Zeyde et al. 30.88 7.29 0.9431 2.44 Zeyde et al. 33.36 5.48 0.9627 2.44
Chen et al. 30.38 7.64 0.9412 161.80 Chen et al. 32.41 6.11 0.9604 159.87
Dong et al. 31.40 6.86 0.9487 221.84 Dong et al. 33.65 5.30 0.9658 226.46
Proposed 30.30 7.78 0.9408 1.73 (9.18) Proposed 32.46 6.08 0.9607 1.78 (9.71)

Clown Mandrill
Bicubic 28.72 9.34 0.8834 0.11 Bicubic 25.67 13.28 0.7385 0.10

Yang et al. 30.41 7.69 0.9156 113.42 Yang et al. 26.42 12.18 0.8038 129.30
Zeyde et al. 30.46 7.65 0.9180 2.43 Zeyde et al. 26.40 12.21 0.8055 2.43
Chen et al. 29.85 8.23 0.9081 169.59 Chen et al. 26.28 12.37 0.7988 178.32
Dong et al. 30.49 7.62 0.9140 226.65 Dong et al. 26.38 12.23 0.7933 239.40
Proposed 29.94 8.12 0.9097 1.81 (11.59) Proposed 26.39 12.23 0.8034 1.66 (2.16)

Couple Average
Bicubic 28.30 9.80 0.8426 0.10 Bicubic 29.36 8.84 0.8739 0.11

Yang et al. 29.71 8.34 0.8861 115.99 Yang et al. 31.15 7.27 0.9114 120.31
Zeyde et al. 29.40 8.64 0.8812 2.44 Zeyde et al. 30.91 7.47 0.9091 2.44
Chen et al. 29.25 8.79 0.8793 160.35 Chen et al. 30.55 7.76 0.9053 166.48
Dong et al. 29.79 8.26 0.8864 236.08 Dong et al. 31.18 7.25 0.9096 232.17
Proposed 29.37 8.67 0.8795 1.75 (7.15) Proposed 30.57 7.72 0.9057 1.73 (5.64)

proposed method. The peak signal-to-noise ratio (PSNR), root
mean squared error (RMSE), structural similarity (SSIM) [37],
and elapsed time were used as quality measures.

For Yang et al.’s sparse representation SR [16], which
employs ℓ1-optimization-based methods with simultaneous
dictionary pair learning and reconstruction phases, LR patches
of size 5 × 5 with an overlap of 4 pixels between adjacent
patches and a sparsity regularization coefficient of 0.1 were
used in all of the experiments, as suggested in [11]. The
implementation1 was obtained from the authors and it was
used with their pretrained 25 × 1024 dictionary for Dh and
a 100 × 1024 dictionary for Dl. In particular, the dictionary

1http://www.ifp.illinois.edu/∼jyang29/ScSR.htm

pair learning process required about 22 hours to obtain 50000
training patch-pairs from a large training dataset that contained
hundreds of images.

Compared to Yang et al.’s algorithms, Zeyde et al.’s imple-
mentation2 [17] uses the same idea of a training phase and
a reconstruction phase, with sparse modeling of the desired
image patches, and a pair of dictionaries is used to migrate
from the LR domain to the HR, but different algorithms
are used for dictionary pair learning from the same training
dataset: K-SVD for the LR dictionary Dl and pseudo-inverse
for the HR dictionary Dh. It should be noted that Zeyde et al.’s
implementation packages (K-SVD and OMP) use the MEX

2http://www.cs.technion.ac.il/∼elad/Various/Single Image SR.zip
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TABLE II
SUMMARY OF PSNR (DB), RMSE, SSIM, AND RECONSTRUCTION TIME (S) RESULTS FOR 13 TEST IMAGES, WHERE SIZE = 256× 256, SCALE FACTOR

m = 2, THRESHOLD OF SMSE λ = 1000, AND PATCH NUMBER n = 3000 (TOTAL COMPUTATION TIME IN PARENTHESES USING THE PROPOSED
METHOD).

m = 2, λ = 1000, n = 3000
Algorithm PSNR RMSE SSIM TIME Algorithm PSNR RMSE SSIM TIME

Lena Crowd
Bicubic 34.12 5.02 0.9905 0.09 Bicubic 32.66 5.93 0.9919 0.10

Yang et al. 36.11 3.99 0.9967 499.24 Yang et al. 35.14 4.46 0.9983 474.36
Zeyde et al. 35.79 4.14 0.9971 7.11 Zeyde et al. 34.75 4.16 0.9987 7.18
Chen et al. 35.58 4.24 0.9978 491.77 Chen et al. 34.08 5.12 0.9974 400.90
Dong et al. 36.21 3.94 0.9909 1072.01 Dong et al. 35.20 4.43 0.9940 1206.62
Proposed 35.81 4.15 0.9979 6.50 (9.59) Proposed 34.27 4.93 0.9987 6.51 (12.71)

Barbara Girl
Bicubic 25.35 13.77 0.9461 0.10 Bicubic 36.64 3.76 0.9918 0.13

Yang et al. 25.92 12.89 0.9809 476.72 Yang et al. 38.68 2.97 0.9976 497.15
Zeyde et al. 25.80 13.08 0.9809 7.06 Zeyde et al. 38.56 3.01 0.9984 7.10
Chen et al. 25.78 13.10 0.9815 327.74 Chen et al. 37.96 3.22 0.9982 338.01
Dong et al. 25.54 13.48 0.9187 1114.39 Dong et al. 38.89 2.90 0.9946 1168.30
Proposed 25.87 12.97 0.9819 6.49 (8.02) Proposed 38.05 3.02 0.9984 6.50 (11.09)

Barbara2 Gold Hill
Bicubic 27.78 10.41 0.9684 0.09 Bicubic 31.45 6.82 0.9826 0.12

Yang et al. 28.96 9.09 0.9941 514.42 Yang et al. 32.54 6.02 0.9947 517.67
Zeyde et al. 28.72 9.34 0.9946 7.08 Zeyde et al. 32.36 6.15 0.9953 7.11
Chen et al. 28.67 9.40 0.9946 342.80 Chen et al. 32.23 6.24 0.9951 350.64
Dong et al. 29.05 9.00 0.9664 1186.79 Dong et al. 32.59 5.98 0.9823 1172.78
Proposed 28.77 9.29 0.9947 6.50 (7.46) Proposed 32.34 6.13 0.9953 6.50 (9.53)

Boat Man
Bicubic 29.95 8.11 0.9834 0.10 Bicubic 31.05 7.15 0.9848 0.09

Yang et al. 31.50 6.78 0.9950 516.09 Yang et al. 32.79 5.85 0.9961 517.41
Zeyde et al. 31.16 7.06 0.9955 7.09 Zeyde et al. 32.48 6.06 0.9967 7.14
Chen et al. 30.97 7.21 0.9955 331.50 Chen et al. 32.16 6.29 0.9965 329.08
Dong et al. 31.58 6.72 0.9854 1166.43 Dong et al. 32.75 5.88 0.9858 1171.04
Proposed 31.15 7.06 0.9956 6.52 (7.41) Proposed 32.40 6.03 0.9967 6.50 (8.16)

Cameraman Peppers
Bicubic 35.73 4.17 0.9939 0.11 Bicubic 31.76 6.59 0.9917 0.08

Yang et al. 38.69 2.96 0.9978 523.61 Yang et al. 32.89 5.78 0.9965 520.85
Zeyde et al. 38.68 2.97 0.9994 7.10 Zeyde et al. 32.70 5.91 0.9975 7.14
Chen et al. 37.96 3.22 0.9993 307.23 Chen et al. 32.35 6.15 0.9974 334.96
Dong et al. 39.38 2.74 0.9969 1193.69 Dong et al. 32.98 5.72 0.9913 1232.00
Proposed 38.36 3.03 0.9995 6.51 (12.21) Proposed 32.66 5.94 0.9975 6.48 (10.26)

Clown Mandrill
Bicubic 32.65 5.95 0.9880 0.10 Bicubic 23.62 16.79 0.9550 0.14

Yang et al. 34.82 4.63 0.9952 476.62 Yang et al. 24.39 15.39 0.9888 528.07
Zeyde et al. 34.77 4.66 0.9959 7.03 Zeyde et al. 24.39 15.39 0.9888 7.15
Chen et al. 33.81 5.10 0.9914 405.01 Chen et al. 24.26 15.61 0.9889 331.72
Dong et al. 34.93 4.58 0.9911 1283.60 Dong et al. 24.31 15.52 0.9496 1262.22
Proposed 34.35 4.79 0.9961 6.55 (12.97) Proposed 24.32 15.49 0.9891 6.51 (7.12)

Couple Average
Bicubic 29.55 8.49 0.9808 0.09 Bicubic 30.95 7.92 0.9807 0.10

Yang et al. 30.96 7.22 0.9948 501.43 Yang et al. 32.57 6.77 0.9943 504.90
Zeyde et al. 30.75 7.40 0.9953 7.14 Zeyde et al. 32.38 6.87 0.9949 7.11
Chen et al. 30.40 7.69 0.9949 398.40 Chen et al. 32.02 7.12 0.9945 360.75
Dong et al. 31.01 7.18 0.9807 1242.29 Dong et al. 32.65 6.77 0.9791 1190.17
Proposed 30.52 7.59 0.9953 6.51 (11.38) Proposed 32.22 6.96 0.9951 6.51 (9.84)

function to call a C program in MATLAB whereas all of the
other methods are implemented solely in MATLAB. Around
100000 training patch-pairs were collected and dictionary pair
learning required approximately 10 minutes to complete 40
iterations of the K-SVD algorithm with 1000 atoms in the
dictionary. We used 3 × 3 for LR patches with an overlap
of 2 pixels between adjacent patches in our comparison
experiments. If Zeyde et al.’s method is implemented purely in
MATLAB, such as magnifying an LR image of size 128×128
by a factor of m = 4, the time required for the dictionary pair
learning and reconstruction phases will increase considerably
to an average of about 1 hour and 5 minutes for each image.

In Chen et al.’s SR method3 [21] using MH prediction,
the pseudo-HR image is magnified by bicubic interpolation
from the LR image. We magnified the LR image by a factor
of m = 2 with LR patches fixed to a size of 4 × 4 in Y
and the search window size was fixed to 8 for hypothesis
generation. To magnify the LR image by a factor of m = 4,
we first magnified the LR image by a factor of m = 2 and then
magnified the resulting image again to obtain the final result.
To facilitate rapid reconstruction with both m = 2 and m =
4, we only used one iteration in each m = 2 magnification
process during our experiments.

3https://sites.google.com/site/chenresearchsite/publications
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TABLE III
SUMMARY OF PSNR (DB), RMSE, SSIM, AND RECONSTRUCTION TIME (S) RESULTS FOR 13 TEST IMAGES, WHERE SIZE = 128× 128, SCALE FACTOR

m = 4, THRESHOLD OF SMSE λ = 1500, AND PATCH NUMBER n = 3000 (TOTAL COMPUTATION TIME IN PARENTHESES USING THE PROPOSED
METHOD).

m = 4, λ = 1500, n = 3000
Algorithm PSNR RMSE SSIM TIME Algorithm PSNR RMSE SSIM TIME

Lena Crowd
Bicubic 28.77 9.29 0.9142 0.11 Bicubic 26.51 12.05 0.8906 0.10

Yang et al. 29.53 8.51 0.9334 455.87 Yang et al. 27.34 10.96 0.9175 488.64
Zeyde et al. 29.57 8.47 0.9351 2.81 Zeyde et al. 27.42 10.85 0.9189 2.81
Chen et al. 29.57 8.47 0.9351 387.05 Chen et al. 27.23 11.08 0.9169 405.70
Dong et al. 29.60 8.44 0.9364 997.46 Dong et al. 27.40 10.88 0.9230 1072.04
Proposed 29.58 8.46 0.9352 2.98 (6.77) Proposed 27.43 10.84 0.9294 2.97 (5.77)

Barbara Girl
Bicubic 23.58 16.88 0.8121 0.12 Bicubic 30.68 7.46 0.8962 0.11

Yang et al. 23.81 16.44 0.8313 464.13 Yang et al. 31.74 6.60 0.9263 492.42
Zeyde et al. 23.84 16.39 0.8320 2.80 Zeyde et al. 31.81 6.55 0.9265 2.83
Chen et al. 23.82 16.43 0.8320 405.19 Chen et al. 31.80 6.55 0.9268 402.90
Dong et al. 23.84 16.39 0.8321 1023.14 Dong et al. 31.81 6.55 0.9261 1012.33
Proposed 23.85 16.38 0.8321 2.89 (5.72) Proposed 31.83 6.53 0.9383 2.99 (6.21)

Barbara2 Gold Hill
Bicubic 24.60 15.01 0.7860 0.10 Bicubic 27.60 10.63 0.8495 0.09

Yang et al. 24.96 14.41 0.8265 490.96 Yang et al. 28.05 10.09 0.8785 484.15
Zeyde et al. 24.98 14.37 0.8288 2.82 Zeyde et al. 28.09 10.05 0.8806 2.80
Chen et al. 24.87 14.55 0.8260 407.72 Chen et al. 27.95 10.21 0.8769 398.45
Dong et al. 24.99 14.36 0.8288 1018.04 Dong et al. 28.07 10.07 0.8789 1015.41
Proposed 25.01 14.34 0.8401 2.98 (5.69) Proposed 28.10 10.04 0.8907 2.98 (6.32)

Boat Man
Bicubic 25.48 13.57 0.8407 0.10 Bicubic 26.80 11.66 0.8602 0.11

Yang et al. 26.01 12.77 0.8731 489.85 Yang et al. 27.37 10.91 0.8897 496.31
Zeyde et al. 26.06 12.69 0.8752 2.76 Zeyde et al. 27.41 10.87 0.8915 2.79
Chen et al. 26.01 12.77 0.8752 412.65 Chen et al. 27.40 10.88 0.8915 396.10
Dong et al. 26.07 12.68 0.8752 1004.58 Dong et al. 27.39 10.89 0.8915 1017.06
Proposed 26.07 12.68 0.8850 2.99 (7.20) Proposed 27.41 10.87 0.8920 2.98 (7.36)

Cameraman Peppers
Bicubic 27.44 10.83 0.9096 0.11 Bicubic 27.86 10.32 0.9369 0.10

Yang et al. 28.50 9.58 0.9315 497.93 Yang et al. 28.35 9.75 0.9476 475.80
Zeyde et al. 28.54 9.54 0.9402 2.78 Zeyde et al. 28.60 9.47 0.9485 2.78
Chen et al. 28.50 9.58 0.9327 419.63 Chen et al. 28.46 9.62 0.9485 403.78
Dong et al. 28.54 9.54 0.9400 1002.39 Dong et al. 28.63 9.44 0.9497 1010.78
Proposed 28.54 9.54 0.9406 2.97 (9.22) Proposed 28.64 9.43 0.9528 3.01 (8.13)

Clown Mandrill
Bicubic 26.64 11.88 0.8698 0.11 Bicubic 21.05 22.59 0.6849 0.11

Yang et al. 27.37 10.92 0.8914 460.75 Yang et al. 21.29 21.98 0.7435 514.63
Zeyde et al. 27.39 10.89 0.8998 2.77 Zeyde et al. 21.30 21.95 0.7468 2.78
Chen et al. 27.29 11.01 0.8891 427.75 Chen et al. 21.25 22.06 0.7495 401.39
Dong et al. 27.36 10.92 0.8911 1103.40 Dong et al. 21.24 22.10 0.7435 1221.07
Proposed 27.39 10.89 0.8999 3.03 (19.84) Proposed 21.34 21.86 0.7532 2.98 (5.89)

Couple Average
Bicubic 25.33 13.81 0.8176 0.10 Bicubic 26.33 12.77 0.8514 0.11

Yang et al. 25.83 13.04 0.8521 470.02 Yang et al. 26.93 12.00 0.8802 483.19
Zeyde et al. 25.84 13.02 0.8542 2.78 Zeyde et al. 26.99 11.93 0.8829 2.79
Chen et al. 25.76 13.13 0.8526 400.56 Chen et al. 26.91 12.02 0.8810 405.30
Dong et al. 25.84 13.02 0.8531 1113.77 Dong et al. 26.98 11.94 0.8823 1047.04
Proposed 25.85 12.99 0.8635 2.97 (6.14) Proposed 27.00 11.91 0.8886 2.98 (7.71)

In Dong et al.’s nonlocally centralized sparse representation
(NCSR) model [27], the simulated LR image is generated by
blurring an HR image with a 7 × 7 Gaussian kernel with a
standard deviation of 1.6, before downsampling the blurred
image by scaling factors of m = 2 and m = 4 in both the
horizontal and vertical directions. NCSR clusters the patches in
an LR image into K clusters and learns a sub-dictionary based
on principal components analysis (PCA) of each cluster. For a
given patch, NCSR first checks the cluster to which it belongs
by calculating the distances to the means of the clusters, before
coding it using the PCA sub-dictionary of the cluster.

In our proposed method, we first magnified the LR input
image by bicubic interpolation to obtain the pseudo-HR image

Xm. We sampled n = 3000 image patches with LR patches of
size N = 2 with an overlap of o = 1 pixel between adjacent
patches in each direction using magnification factors of m = 2
and m = 4; thus, the pseudo-HR image patches were fixed to a
size of 4×4 and 8×8. All of the experiments were performed
using MATLAB R2013a on an Intel (R) Core (TM) i7-2600
@ 3.40 GHz machine with 8 GB of RAM.

Figure 1 shows two HR dictionaries trained using pseudo-
HR images of “Barbara” and “Lena”, respectively. The learned
dictionary included the basic patterns of the image patches
instead of the raw patch prototypes, due to its compactness.
Figure 2 shows the total computation time in seconds, includ-
ing the dictionary learning and reconstruction phases, and the
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TABLE IV
PSNR (DB) AND TOTAL COMPUTATION TIME (S) FOR RECONSTRUCTED IMAGES USING DIFFERENT TEST IMAGE SIZES, DIFFERENT QUANTITIES OF

SAMPLED IMAGE PATCHES, AND VARIOUS MAXIMUM SMSE THRESHOLDS.

n = 3000 n = 5000 n = 10000
Image m size λ PSNR TIME m size λ PSNR TIME m size λ PSNR TIME

Lena 2 128 1900 32.45 1.97 2 128 2000 32.45 1.94 2 128 2000 32.46 2.01
256 1500 35.81 6.67 256 1800 35.80 6.59 256 1900 35.80 6.63

4 128 1500 29.58 6.77 4 128 1700 29.59 5.96 4 128 2000 29.58 5.77

Cameraman 2 128 3800 30.30 1.98 2 128 4100 30.30 1.92 2 128 4100 30.30 2.00
256 2600 38.36 6.76 256 2700 38.36 6.62 256 2700 38.36 6.73

4 128 2200 28.54 5.81 4 128 2900 28.53 5.34 4 128 3500 28.53 5.42

Clown 2 128 4400 29.95 2.20 2 128 5200 29.94 1.93 2 128 5200 29.94 2.03
256 4500 34.35 6.68 256 4600 34.35 6.64 256 5400 34.35 6.66

4 128 2600 27.39 5.37 4 128 3600 27.38 5.21 4 128 4300 27.38 5.43

Fig. 3. Results for the Lena input image of size 128× 128 magnified by a factor of m = 2. Top row: low-resolution input, bicubic interpolation, Yang et
al.’s method [16], and Zeyde et al.’s method [17]. Bottom row: Chen et al.’s method [21], Dong et al.’s method [27], our method, and the original HR image.

variations in the PSNR, where “Clown” was the test image
of size 128× 128 with variable SMSE thresholds. The results
show that the total computation time was reduced greatly and
the PSNR remained constant as the SMSE threshold increased
for each pseudo-HR image patch.

The experimental results obtained for m = 2 are presented
in Tables I and II, where the results shown in Table I were
based on input images of size 128 × 128 whereas those in
Table II had input images of 256×256 pixels. Table III shows
the reconstruction results for m = 4 with input images of size
128 × 128. Each result in Tables I, II, and III represents the
average of 10 independent runs. In these three tables, it should
be noted that the results obtained using Yang et al.’s method
and Zeyde et al.’s method only include the reconstruction
phase time and not the dictionary pair learning process. With
the same magnification m and LR patch size N , both methods
simply trained the dictionary pair once but the time required
for dictionary pair learning was far longer than that using our
method. For the elapsed times required using our proposed
approach in Tables I, II, and III, the figures outside the
parentheses indicate the reconstruction phase time and those

in parentheses are the total computation time, including the
dictionary learning and reconstruction phases. Visual compar-
isons of the HR reconstruction of images “Lena,” “Barbara,”
“Gold Hill,” and “Mandrill” of size 256 × 256 using various
algorithms are shown in Figs. 3-6, with a magnification factor
of m = 2. Visual comparisons of the HR reconstructions of the
“Girl” and “Peppers” images of size 512× 512 using various
algorithms are shown in Figs. 7 and 8 with a magnification
factor of m = 4. The results demonstrate that Yang et al.’s
sparse representation SR reconstruction algorithm performed
slightly better in terms of the visual effect compared with our
proposed method with a magnification factor of m = 2, which
was because a meaningful external HR images training set was
used where the resolution was similar to the reconstructed
image, although our algorithm was far more efficient than
Yang’s in terms of speed. Compared with Chen et al.’s MH
prediction SR reconstruction algorithm, which only uses the
LR input image without an external HR images training set
for single image SR reconstruction, the performance of our
method was very similar in terms of the visual effect but
far superior in terms of efficiency. Although Zeyde et al.’s
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Fig. 4. Results for the Barbara input image of size 128× 128 magnified by a factor of m = 2. Top row: low-resolution input, bicubic interpolation, Yang et
al.’s method [16], and Zeyde et al.’s method [17]. Bottom row: Chen et al.’s method [21], Dong et al.’s method [27], our method, and the original HR image.

Fig. 5. Results for the Gold Hill input image of size 128× 128 magnified by a factor of m = 2. Top row: low-resolution input, bicubic interpolation, Yang
et al.’s method [16], and Zeyde et al.’s method [17]. Bottom row: Chen et al.’s method [21], Dong et al.’s method [27], our method, and the original HR
image.

method has significantly reduced computational complexity
compared with Yang et al.’s method, it is still not as efficient
as our method in terms of reconstruction time. Dong et
al.’s method achieved the best reconstruction performance in
most cases since it can suppress the sparse coding noise;
however, the method is the most computationally expensive
one which on average costs more than a hundred times of
the reconstruction time of our method. With a magnification
factor of m = 4, our proposed method performed better
in terms of the reconstruction effect and computation time.
However, our learned dictionary, which effectively avoids the

complex dictionary training procedure required by Yang et
al.’s approach [16], provides a more compact representation
of patch pairs.

In our experiments, we found that the highest SMSE
thresholds differed for the images. However, we can select
a suitable threshold for most images to maintain the qual-
ity and efficiency of batch image reconstruction. Table IV
demonstrates how the size of the input image, the number
n of image patches sampled from pseudo-HR images, and
the SMSE threshold λ affect the PSNR and total computation
time, including dictionary learning and reconstruction, with
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Fig. 6. Results for the Mandrill input image of size 128× 128 magnified by a factor of m = 2. Top row: low-resolution input, bicubic interpolation, Yang
et al.’s method [16], and Zeyde et al.’s method [17]. Bottom row: Chen et al.’s method [21], Dong et al.’s method [27], our method, and the original HR
image.

Fig. 7. Results for the Girl input image of size 128×128 magnified by a factor of m = 4. Top row: low-resolution input, bicubic interpolation, Yang et al.’s
method [16], and Zeyde et al.’s method [17]. Bottom row: Chen et al.’s method [21], Dong et al.’s method [27], our method, and the original HR image.

different magnification factors based on three images.

We also evaluated the effect of the dictionary size on single
image SR using our proposed approach. We magnified three
input images of size 256 × 256 by a magnification factor
of m = 2 and three input images of size 128 × 128 by
a magnification factor of m = 4, where N = 2 in both
processes, to determine the optimal size of the HR dictionary
Dh, as shown in Tables V and VI. The results show that the
speed of dictionary learning and reconstruction would decline
when the dimensionality Z of atoms in the dictionary is not
m2N2, i.e., Z ̸= m2N2. Therefore, we can conclude that

the dictionary may be most suitable for reconstructing HR
images when Z = q, regardless of PSNR, RMSE, SSIM, or the
total computation time. Thus, all the SR processes conducted
using our proposed approach were implemented based on a HR
dictionary Dh, where the size was q × q because of Z = q,
and we obtained an LR dictionary Dl of size p× q by bicubic
interpolation from Dh.

IV. CONCLUSION

In this paper, we proposed a novel algorithm for fast single
image SR based on self-example patch-based dictionary learn-
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Fig. 8. Results for the Peppers input image of size 128× 128 magnified by a factor of m = 4. Top row: low-resolution input, bicubic interpolation, Yang et
al.’s method [16], and Zeyde et al.’s method [17]. Bottom row: Chen et al.’s method [21], Dong et al.’s method [27], our method, and the original HR image.

Algorithm 1 Fast Single Image SR via Self-Example and
Sparse Representation

1. Input: an LR image Y , magnification factor m, threshold
of SMSE λ.
2. Initialization: the initial pseudo-HR image Xm =
Bicubic(Y ), random normalized dictionary Dh.
3. Sample n patches of size mN×mN from Xm and obtain
the image patch column vectors set Xh under λ.
4. Repeat until convergence (complete learning of Dh):

• Sparse Coding Stage: Fix Dh and use OMP algorithm
to obtain the sparse coefficients β with Xh in (6).

• Dictionary Update Stage: For j = 1 to Z,
– Update Dh and β using (8).

Until objective function in (7) remains unchanged.
5. For each N ×N LR patch of y of Y , starting from the
upper-left corner where o pixels overlap in each direction,

• Use OMP algorithm to solve the sparse coefficients α
in (9).

• Generate the HR image patch ÎHR in (10) and put this
patch into an HR image X̂ .

6. Using gradient descent, find the closest image to X̂ that
satisfies the reconstruction constraint defined in (11):

X∗ = argmin
X

∥S ·X − Y ∥22 + c∥X − X̂∥22

7. Output: HR image X∗.

ing and sparse representation. Our proposed strategy exploits
the sparse signal representation theory in the framework of CS
and dictionary learning of image patches. No HR training set is
required for our SR method, in which we exploit image patches
within a single image and sparse representation, with only one
learned dictionary. This makes our method more practical than

TABLE V
PSNR (DB), RMSE, SSIM, AND TOTAL COMPUTATION TIME (S) RESULTS

FOR RECONSTRUCTED IMAGES (512× 512) USING DICTIONARIES OF
DIFFERENT SIZES Z , SCALE FACTOR m = 2, N = 2, THRESHOLD OF

SMSE λ = 1500, AND PATCH NUMBER n = 3000.

m = 2, N = 2, λ = 1500, n = 3000
Image Z PSNR RMSE SSIM TIME

Lena

16 35.81 4.15 0.9979 6.67
32 35.81 4.16 0.9979 8.53
64 35.80 4.16 0.9979 12.22
128 35.80 4.16 0.9979 19.77
256 35.80 4.16 0.9979 35.85
512 35.80 4.16 0.9979 75.52

1024 35.80 4.16 0.9979 286.47
2048 35.80 4.16 0.9979 1126.73

Girl

16 38.05 3.02 0.9983 6.92
32 38.05 3.02 0.9983 8.61
64 38.05 3.02 0.9983 12.44
128 38.05 3.02 0.9983 19.94
256 38.05 3.02 0.9983 35.36
512 38.05 3.02 0.9983 74.79

1024 38.05 3.02 0.9983 285.09
2048 38.05 3.02 0.9983 1006.72

Peppers

16 32.66 5.94 0.9975 6.82
32 32.66 5.94 0.9975 8.73
64 32.66 5.94 0.9975 12.38
128 32.66 5.94 0.9975 20.72
256 32.66 5.94 0.9975 36.64
512 32.66 5.94 0.9975 75.40

1024 32.66 5.94 0.9975 291.31
2048 32.66 5.94 0.9975 1105.48

competing SR approaches that use external HR training sets
because there is no guarantee that a relevant HR training set
is available for LR input images in all situations. Compared
with other SR algorithms, our proposed approach is highly
competitive in terms of the reconstruction performance but
far superior in terms of computational efficiency for natural
images.
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TABLE VI
PSNR (DB), RMSE, SSIM, AND TOTAL COMPUTATION TIME (S) RESULTS

FOR RECONSTRUCTED IMAGES (512× 512) USING DICTIONARIES OF
DIFFERENT SIZES Z , SCALE FACTOR m = 4, N = 2, THRESHOLD OF

SMSE λ = 1500, AND PATCH NUMBER n = 3000.

m = 4, N = 2, λ = 1500, n = 3000
Image Z PSNR RMSE SSIM TIME

Lena

16 29.58 8.46 0.9351 14.34
32 29.58 8.46 0.9351 8.19
64 29.58 8.46 0.9351 6.77
128 29.58 8.46 0.9351 8.24
256 29.58 8.46 0.9351 14.45
512 29.58 8.46 0.9351 38.62

1024 29.58 8.46 0.9351 223.13
2048 29.58 8.46 0.9351 1178.29

Girl

16 31.82 6.53 0.9383 14.03
32 31.82 6.53 0.9383 7.96
64 31.82 6.53 0.9383 6.21
128 31.82 6.53 0.9383 8.21
256 31.82 6.53 0.9383 14.55
512 31.82 6.53 0.9383 36.71

1024 31.82 6.53 0.9383 214.50
2048 31.82 6.53 0.9383 1098.32

Peppers

16 28.64 9.43 0.9528 15.01
32 28.64 9.43 0.9528 8.90
64 28.64 9.43 0.9528 8.13
128 28.64 9.43 0.9528 8.95
256 28.64 9.43 0.9528 15.16
512 28.64 9.43 0.9528 39.77

1024 28.64 9.43 0.9528 235.44
2048 28.64 9.43 0.9528 1212.19
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